

Towards a Digital Engineering Ontology to Support Information Exchange

**INCOSE IS
7/28/2025**

PRESENTER **Dr. Joe Gregory** Postdoctoral Research Associate
Department of Systems & Industrial Engineering

Co-chair: Clarence (Moe) Moreland

Co-authors: James Wheaton, Celia Tseng

Contents

- Digital Engineering Challenges
- Ontology as a Solution
- DEIX Overview
- DE Ontology
- Next Steps

- **Digital Engineering Challenges**
- Ontology as a Solution
- DEIX Overview
- DE Ontology
- Next Steps

Digital Engineering

“is an integrated digital approach that uses authoritative sources of system data and models as a continuum across disciplines to support lifecycle activities from concept through disposal.” [1]

Digital Engineering

“is an **integrated** digital approach that uses **authoritative** sources of system data and models as a **continuum** across disciplines to support **lifecycle activities** from concept through disposal.” [1]

Digital Engineering

“is an **integrated** digital approach that uses **authoritative** sources of system data and models as a **continuum** across disciplines to support **lifecycle activities** from concept through disposal.” [1]

“is a means of using and integrating digital models and the underlying data to support the development, test and evaluation, and sustainment of a system.” [2]

[1] <https://www.de-bok.org/about/what-is-digital-engineering> (accessed 7/27/2025)

[2] OUSD(R&E), DoDI 5000.97, Digital Engineering, 2023

Digital Engineering

“is an **integrated** digital approach that uses **authoritative** sources of system data and models as a **continuum** across disciplines to support **lifecycle activities** from concept through disposal.” [1]

“is a means of using and **integrating** digital models and the underlying data to support the development, test and evaluation, and sustainment of a system.” [2]

[1] <https://www.de-bok.org/about/what-is-digital-engineering> (accessed 7/27/2025)

[2] OUSD(R&E), DoDI 5000.97, Digital Engineering, 2023

Digital Engineering

“is an **integrated** digital approach that uses **authoritative** sources of system data and models as a **continuum** across disciplines to support **lifecycle activities** from concept through disposal.” [1]

“is a means of using and **integrating** digital models and the underlying data to support the development, test and evaluation, and sustainment of a system.” [2]

“is the construction of digital (computer) models that represent every characteristic of a complex product or system that is to be developed.” [3]

[1] <https://www.de-bok.org/about/what-is-digital-engineering> (accessed 7/27/2025)

[2] OUSD(R&E), DoDI 5000.97, Digital Engineering, 2023

[3] <https://www.baesystems.com/en-us/definition/what-is-digital-engineering> (accessed 7/27/2025)

Digital Engineering

“is an **integrated** digital approach that uses **authoritative** sources of system data and models as a **continuum** across disciplines to support **lifecycle activities** from concept through disposal.” [1]

“is a means of using and **integrating** digital models and the underlying data to support the development, test and evaluation, and sustainment of a system.” [2]

“is the **construction** of digital (computer) models that represent every characteristic of a complex product or system that is to be developed.” [3]

[1] <https://www.de-bok.org/about/what-is-digital-engineering> (accessed 7/27/2025)

[2] OUSD(R&E), DoDI 5000.97, Digital Engineering, 2023

[3] <https://www.baesystems.com/en-us/definition/what-is-digital-engineering> (accessed 7/27/2025)

Digital Engineering

“is an **integrated** digital approach that uses **authoritative** sources of system data and **models** as a **continuum** across disciplines to support **lifecycle activities** from concept through disposal.” [1]

“is a means of using and **integrating** digital **models** and the underlying data to support the development, test and evaluation, and sustainment of a system.” [2]

“is the **construction** of digital (computer) **models** that represent every characteristic of a complex product or system that is to be developed.” [3]

[1] <https://www.de-bok.org/about/what-is-digital-engineering> (accessed 7/27/2025)

[2] OUSD(R&E), DoDI 5000.97, Digital Engineering, 2023

[3] <https://www.baesystems.com/en-us/definition/what-is-digital-engineering> (accessed 7/27/2025)

What is Modeling [1]?

- Precise language for effective communication,
- Mathematical abstractions that empower analysis,
- Effective automation to reduce error.

What is Modeling [1]?

- **Precise language** for effective communication,
- Mathematical abstractions that empower analysis,
- Effective automation to reduce error.

Authoritative Source of Truth (ASOT)

Authoritative Source of Truth (ASOT)

ASOT [1]: an entity such as a person, governing body, or system that applies expert judgement and rules to proclaim a digital artifact is valid and originates from a legitimate source.

Authoritative Source of Truth (ASOT)

ASOT [1]: an entity such as a person, governing body, or system that applies expert judgement and rules to proclaim a digital artifact is valid and originates from a legitimate source.

ASOT [2]: the single, definitive source of a given piece of information that all consumers of that information should reference to mitigate the risk of relying on outdated, inconsistent, or inaccurate information.

DE Environment / Ecosystem

DE Environment / Ecosystem

DE Ecosystem [1]: The interconnected infrastructure, environment, and methodology (process, methods, and tools) used to store, access, analyze, and visualize evolving systems' data and models to address the needs of the stakeholders.

DE Environment / Ecosystem

DE Ecosystem [1]: The interconnected infrastructure, environment, and methodology (process, methods, and tools) used to store, access, analyze, and visualize evolving systems' data and models to address the needs of the stakeholders.

DE Ecosystem [2]: IT infrastructure that supports collection, management and analysis of all digital information in an architecture that provides seamless digital thread and enables tool interoperability, including data structures suitable for AI applications.

[1] <https://www.dau.edu/glossary/digital-engineering-ecosystem> (provided by ODASD(SE)) (accessed 7/27/2025)

[2] <https://www.sandia.gov/digital-engineering/de-ecosystem-governance> (accessed 7/27/2025)

DE Environment / Ecosystem

DE Ecosystem [1]: The interconnected infrastructure, environment, and methodology (process, methods, and tools) used to store, access, analyze, and visualize evolving systems' data and models to address the needs of the stakeholders.

DE Ecosystem [2]: IT infrastructure that supports collection, management and analysis of all digital information in an architecture that provides seamless digital thread and enables tool interoperability, including data structures suitable for AI applications.

DE Environment [3]: A DE Environment enables the interconnected data, people, processes, and technology used to store, access, analyze, and visualize evolving systems' data and models to address the needs of enterprise-wide stakeholders.

[1] <https://www.dau.edu/glossary/digital-engineering-ecosystem> (provided by ODASD(SE)) (accessed 7/27/2025)

[2] <https://www.sandia.gov/digital-engineering/de-ecosystem-governance> (accessed 7/27/2025)

[3] McDermott, T. (2022). WRT-1051 Program Managers Guide to Digital and Agile Systems Engineering Process Transformation.

What is Modeling?

If **modeling** means the following:

- Precise language for effective communication,
- Mathematical abstractions that empower analysis,
- Effective automation to reduce error.

Then:

- We need to first align our **conceptual** understanding (not just our data formats),
- We need to represent them **logically** (mathematically),
- We can leverage existing tools to **automate** reasoning across our digital information.

- Digital Engineering Challenges
- **Ontology as a Solution**
- DEIX Overview
- DE Ontology
- Next Steps

What is Ontology?

Ontologies provide a means to represent that **precise language** [1].

- i.e., define what is meaningful to say within a particular domain.

What is Ontology?

Ontologies provide a means to represent that **precise language** [1].

- i.e., define what is meaningful to say within a particular domain.

Example 1

- System $s1$ has mass 100 kg.
- Function $f1$ has mass 100 kg.

What is Ontology?

Ontologies provide a means to represent that **precise language** [1].

- i.e., define what is meaningful to say within a particular domain.

Example 1

- System $s1$ has mass 100 kg.
- Function $f1$ has mass 100 kg.

Example 2

- VerificationCase $v1$ verifies Requirement $r1$.
- Requirement $r1$ verifies VerificationCase $v1$.

What is Ontology?

Ontologies provide a means to represent that **precise language** [1].

- i.e., define what is meaningful to say within a particular domain.

Example 1

- System $s1$ has mass 100 kg.
- Function $f1$ has mass 100 kg.

Example 2

- VerificationCase $v1$ verifies Requirement $r1$.
- Requirement $r1$ verifies VerificationCase $v1$.

Example 3

- DEEnvironment $e1$ contains DigitalArtifact $d1$.

Ontological Reasoning

If we model *what we know* using ontologies,
Reasoners allow us to discover *what we didn't realize we knew*.

Ontological Reasoning

If we model *what we know* using ontologies,
Reasoners allow us to discover *what we didn't realize we knew*.

Example 1

- Every *SystemRequirement* must be verified by at least one *VerificationActivity*.
- Reasoner can find: *req27* has no linked *VerificationActivity* (i.e., potential gap in the V&V plan).

Ontological Reasoning

If we model *what we know* using ontologies,
Reasoners allow us to discover *what we didn't realize we knew*.

Example 1

- Every *SystemRequirement* must be verified by at least one *VerificationActivity*.
- Reasoner can find: *req27* has no linked *VerificationActivity* (i.e., potential gap in the V&V plan).

Example 2

- A *DigitalTwin* must carry a *SystemView* produced by a *MeasurementProcess*.
- If *artifact123* does not: Reasoner says it's not a valid *DigitalTwin*.

Ontological Reasoning

If we model *what we know* using ontologies,
Reasoners allow us to discover *what we didn't realize we knew*.

Example 1

- Every *SystemRequirement* must be verified by at least one *VerificationActivity*.
- Reasoner can find: *req27* has no linked *VerificationActivity* (i.e., potential gap in the V&V plan).

Example 2

- A *DigitalTwin* must carry a *SystemView* produced by a *MeasurementProcess*.
- If *artifact123* does not: Reasoner says it's not a valid *DigitalTwin*.

Powerful way to:

- Catch modeling errors or inconsistencies early.
- Ensure that artifacts meet necessary criteria.
- Automatically detect redundant or missing artifacts.
- Enforce traceability or coverage (e.g., “does each artifact address a stakeholder need?”).

Specifically, why is this relevant to DE?

- Digital Engineering Challenges
- Ontology as a Solution
- **DEIX Overview**
- DE Ontology
- Next Steps

What is the DEIX WG?

- Digital Engineering Information Exchange WG
- Formed as INCOSE Working Group in 2018
- Collaboration between:
 - International Council of Systems Engineers (INCOSE)
 - National Defense Industrial Association (NDIA)
 - Office of the Under Secretary of Defense for Research and Engineering (DoD OUSD(R&E))
- The DEIXWG:

“supports the strategic objective of accelerating digital engineering transformation by characterizing the content and relationships involved in the exchange of digital artifacts between stakeholders of various disciplines throughout the engineering lifecycle”

Use the authoritative source of truth to produce digital artifacts, support reviews, and inform decisions

As the technical baseline matures, preserving the knowledge across programs and lifecycle phases is essential. Technical reviews can be conducted from the authoritative source of truth on a continuous basis. Stakeholders will generate digital artifacts, representing multiple views and various perspectives from the authoritative source of truth. Digital artifacts provide visibility of appropriate information across functional domains, disciplines, and organizations.

--- DoD Digital Engineering Strategy, 2018

What is the DEIX WG?

Chair: Terri Chan: terri.chan@incose.net

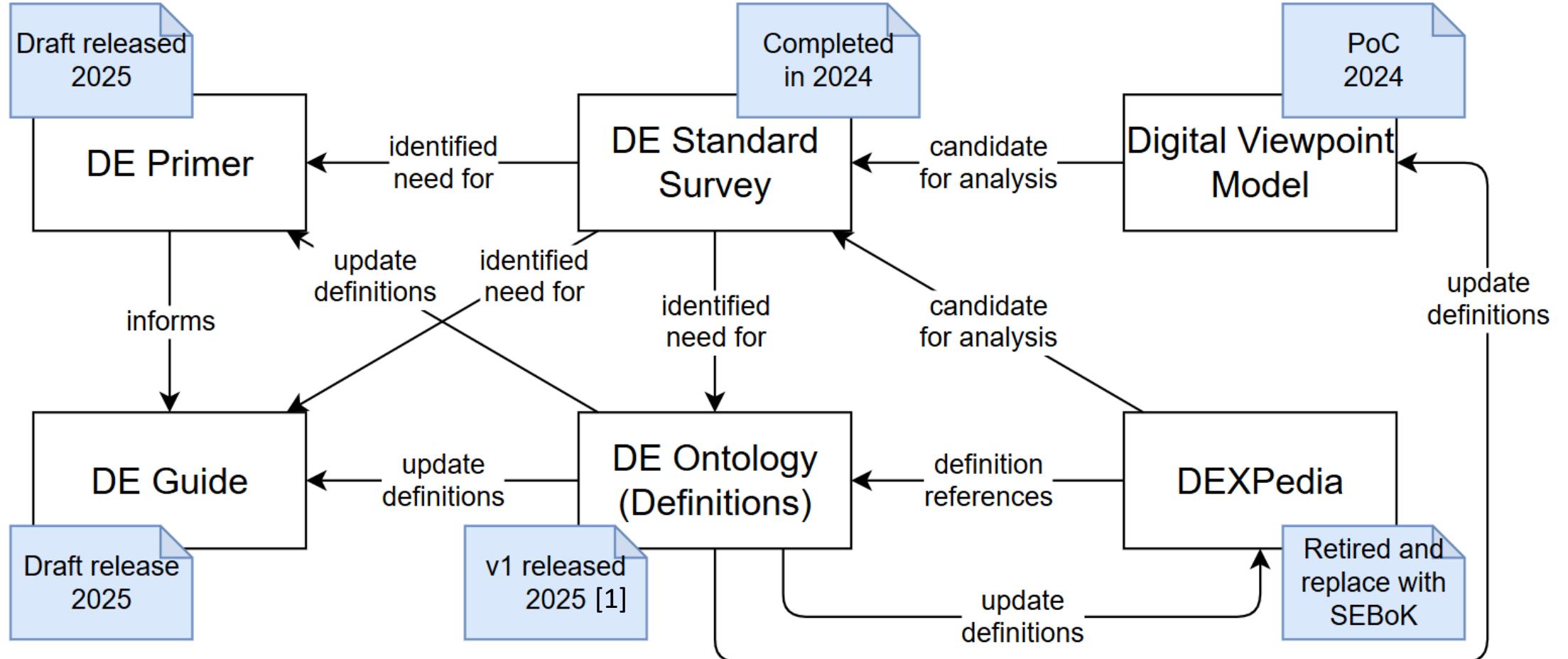
Deputy Chair: Celia Tseng: Celia.Tseng@3ds.com

Co-Chair (OSD Liaison): Frank Salvatore: Frank.J.Salvatore@SAIC.com

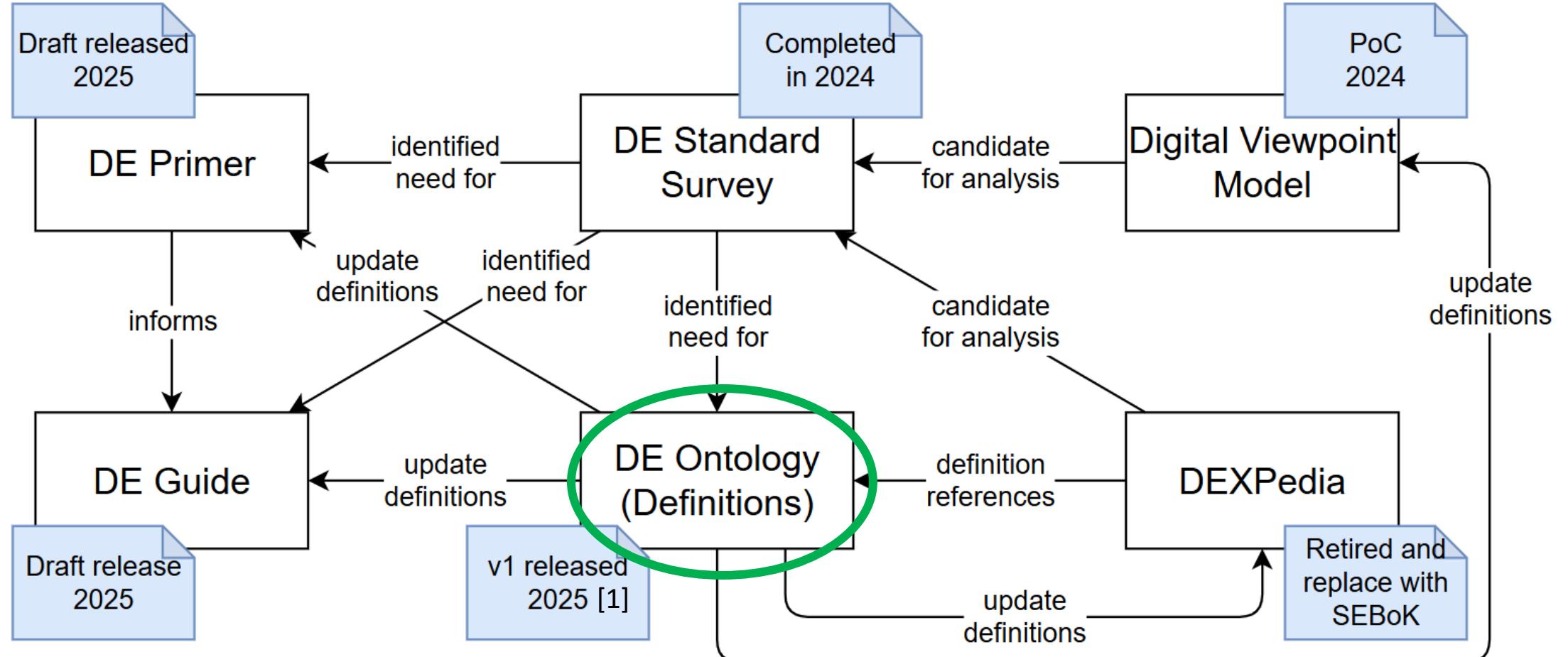
Co-Chair (NDIA Liaison): Chris Schreiber: Chris.Schreiber@LMCO.com

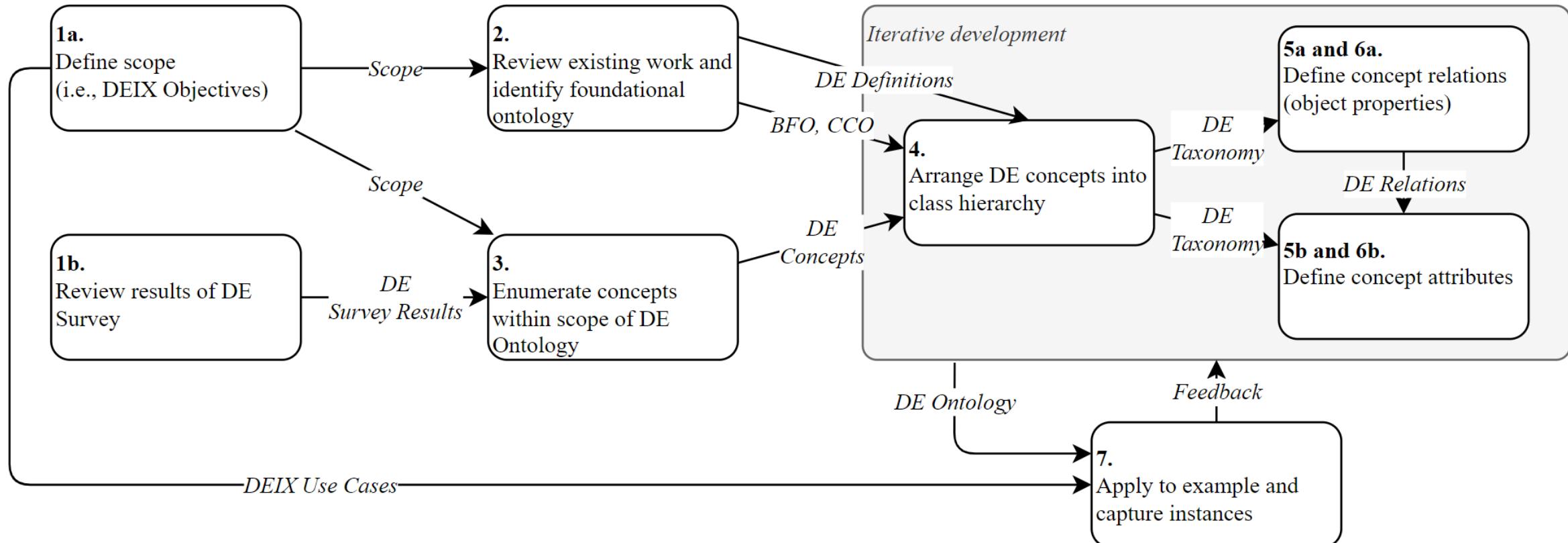
Tech Leads – Ontology: Joe Gregory joegregory@arizona.edu

Moe Moreland moe.moreland@mtsi-va.com


DE Primer: Darryl Howell darryl.howell@pcgconsults.com

DE Guide: Melissa Wallace melissa.wallace@incose.net


Digital Viewpoint Model (DVM): Leqi (Ken) Zhang LeqiKen.Zhang@L3Harris.com

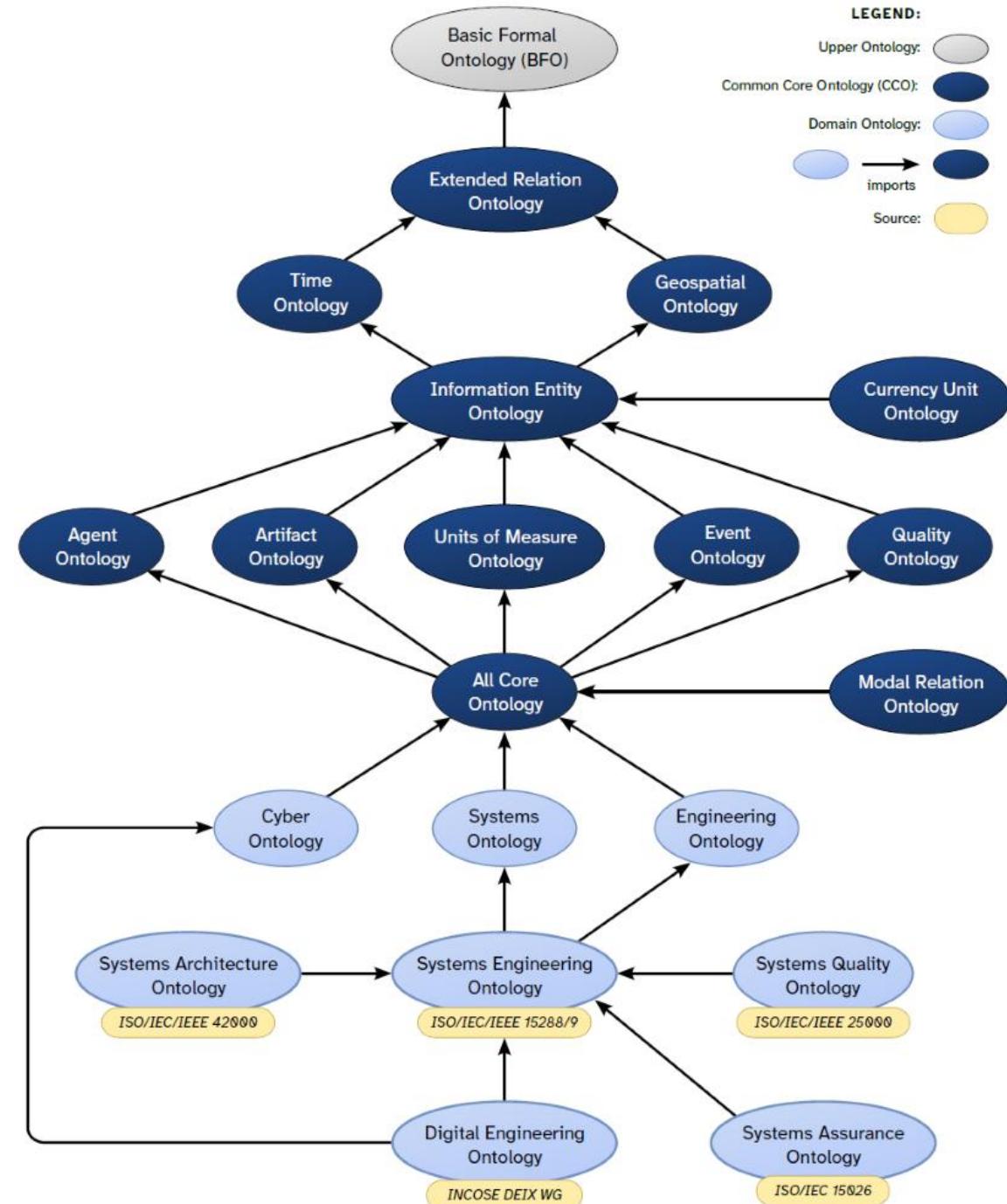

What is the DEIX WG?

What is the DEIX WG?

Our Approach

- Digital Engineering Challenges
- Ontology as a Solution
- DEIX Overview
- **DE Ontology**
- Next Steps

Goals



"Support the DEIX WG (the **Digital Viewpoint Model**, the **DE Guide** and the **DE Primer**) by providing clear, concise, consistent definitions of DE concepts"

- **Concept-based**
 - i.e., focus on definition of the *concept* rather than specific *terminology*
 - This allows us to define synonyms / mappings between domains
- **Focus on definitions to support relevant domains**
 - Reached by consensus, and aligning with standards from relevant domains
 - Concepts are defined by their relationships
- **Machine-readable**
 - Web Ontology Language (OWL) or similar
 - Protégé or similar

Goals

- Align with similar work in other areas
 - Built on Basic Formal Ontology (BFO) and Common Core Ontologies (CCO)
 - Industrial Ontology Foundry (IOF) SE Working Group
 - OntoCommons

Use Cases

We have also defined three use cases that define our objectives re: **reasoning** capabilities

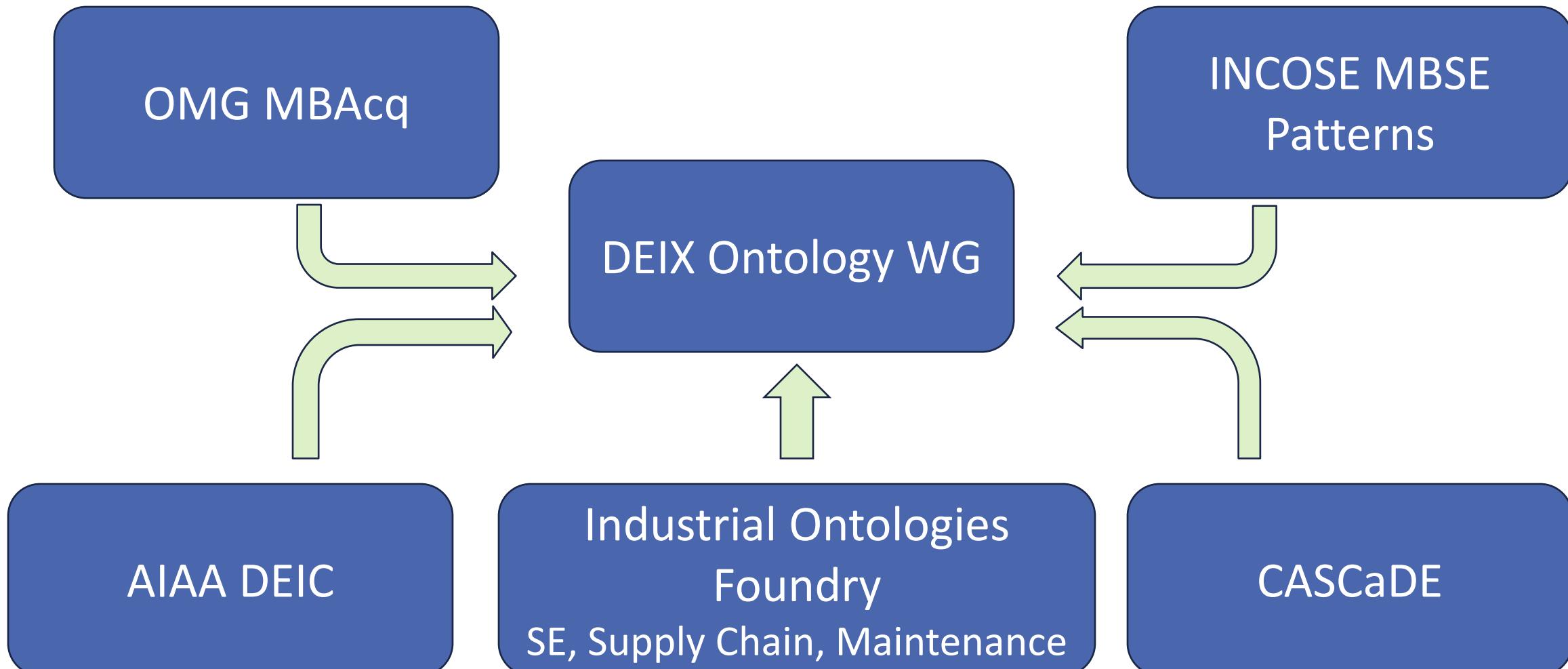
Use Cases

We have also defined three use cases that define our objectives re: **reasoning** capabilities

- 1. **Classification Reasoning**
 - What concept is this instance typed by?
 - e.g., is this *thing* a **Digital Artifact** or a **Digital System Model**?
 - Dependent on that *thing*'s relations and attributes

Use Cases

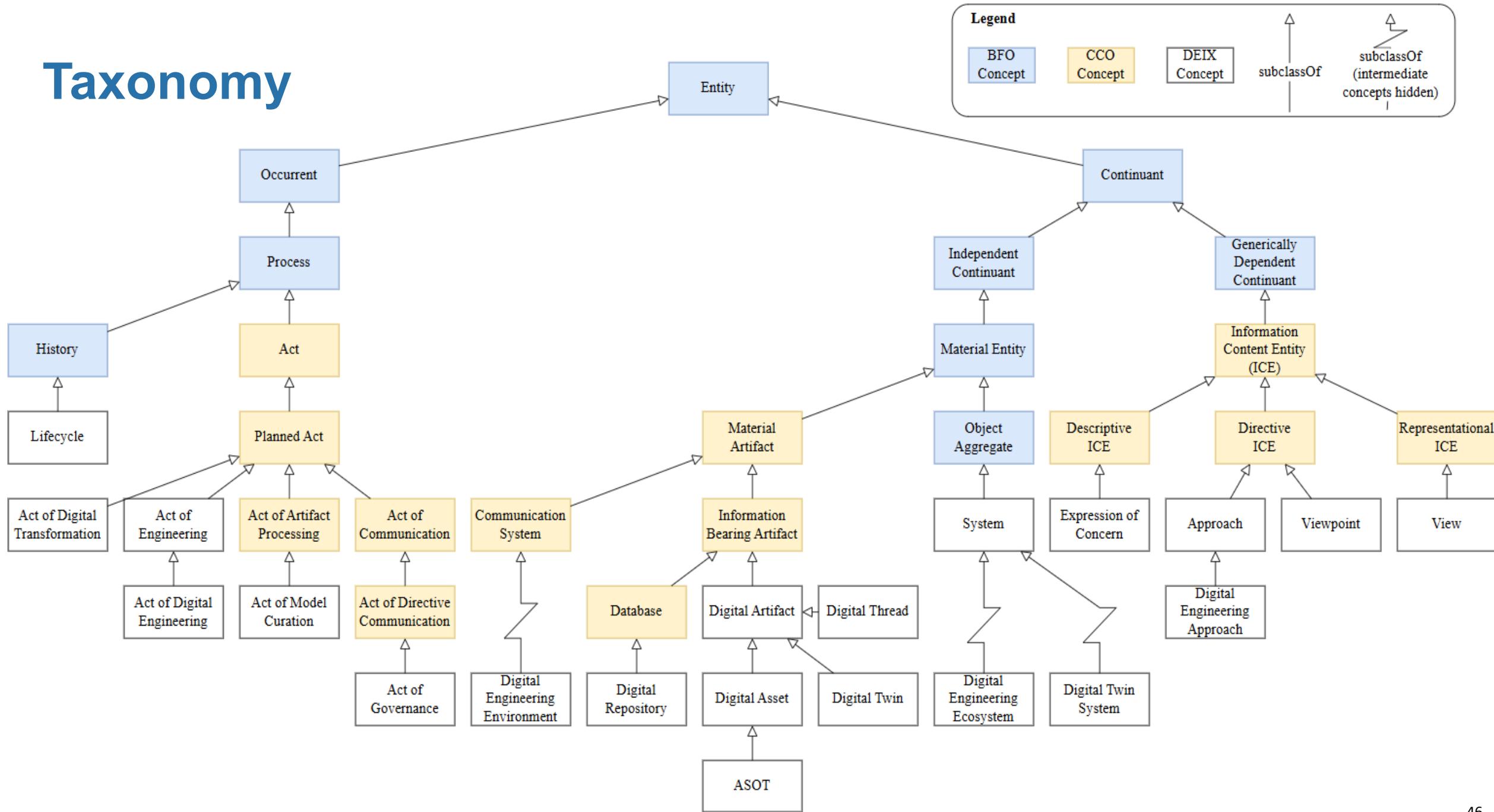
We have also defined three use cases that define our objectives re: **reasoning** capabilities


- **1. Classification Reasoning**
 - What concept is this instance typed by?
 - e.g., is this *thing* a **Digital Artifact** or a **Digital System Model**?
 - Dependent on that *thing*'s relations and attributes
- **2. Reusability Criteria**
 - Is this artifact suitable for reusability, given the context I wish to reuse it in?
 - Considers *Reusable Asset Criteria* (RAS), from OMG Model-Based Acquisition WG
 - Criteria generally includes metadata as well as content.

Use Cases

We have also defined three use cases that define our objectives re: **reasoning** capabilities

- **1. Classification Reasoning**
 - What concept is this instance typed by?
 - e.g., is this *thing* a **Digital Artifact** or a **Digital System Model**?
 - Dependent on that *thing*'s relations and attributes
- **2. Reusability Criteria**
 - Is this artifact suitable for reusability, given the context I wish to reuse it in?
 - Considers *Reusable Asset Criteria* (RAS), from OMG Model-Based Acquisition WG
 - Criteria generally includes metadata as well as content.
- **3. Asset Utility**
 - Does this asset address a particular need?
 - Analogous to traceability from system component, through function and requirement, to need
 - Reverse the question: impact analysis for particular business / use cases. How many artifacts?


Related WGs



Core DE Concepts

DE Concept	Definition Status
ASOT	v1 complete
ASOT Role	v1 complete
Digital Process	underway
Digital Artifact	v1 complete
Digital Asset	v1 complete
Digital Engineering (Act of)	v1 complete
Digital Engineering Ecosystem	v1 complete
Digital Engineering Environment	v1 complete
Digital Engineering Approach	v1 complete
Digital Repository	v1 complete
Digital Thread	underway
Digital Transformation	underway
Digital Twin	v1 complete
Digital Twin System	v1 complete
Digital Instance	not started
Digital Prototype	not started
Governance (Act of)	not started
Model Curation (Act of)	not started
Model-Based Engineering (Approach)	not started
Trusted Digital Repository	underway
View	v1 complete
Viewpoint	v1 complete

Taxonomy

$ASOT(x) \equiv DigitalAsset(x)$

- $\wedge \exists a (ASOTRole(a) \wedge bearerOf(x,a))$
- $\wedge \exists b (ActOfDigitalEngineering(b) \wedge hasASOTContext(a,b))$
- $\wedge \exists c (Authority(c) \wedge designatedBy(a,c))$
- $\wedge \exists d (View(d) \wedge carrierOf(x,d))$

- Digital Engineering Challenges
- Ontology as a Solution
- DEIX Overview
- DE Ontology
- **Next Steps**

Invite Reviewers of OWL Model

- We are in the process of building in Protégé, on top of BFO/CCO

The screenshot shows the Protégé ontology editor interface. On the left, the 'Class hierarchy: MaterialArtifact' is displayed, showing the inheritance path from `owl:Thing` through `entity` to `MaterialArtifact`. The tree includes categories like `continuant`, `independent continuant`, `material entity`, `object`, and `specifically dependent continuant`. On the right, the 'Annotations: MaterialArtifact' panel is open, showing the following annotations:

- `rdfs:label` [language: en-us]: material artifact
- `adaptedFrom`: <http://www.ontologyrepository.com/CommonCoreOntologies/Mid/ArtifactOntology>
- `firstOrderLogicDefinition`: $\text{MaterialArtifact}(x) \leftrightarrow \text{Object}(x) \wedge \exists f(\text{DesignedFunction}(f) \wedge \text{bearerOf}(x,f))$
- `naturalLanguageDefinition` [language: en-us]: object that is deliberately created to have a certain function
- `semiFormalNaturalLanguageDefinition`: every instance of 'material artifact' is defined as exactly an instance of 'object' that is the 'bearer of' some 'designed function'
- `skos:example` [language: en-us]: a machine, a screwdriver, a screw, a sheet of paper

Proceed toward v2

Discuss next set of concepts

- Digital Thread
- Digital System Model
- ...

Incorporate other works

- IOF SE, Supply Chain
- Systems Pattern
- SE Processes
- MBAcq metadata
- CASCaDE
- ...

We need data

- Source data to test use cases

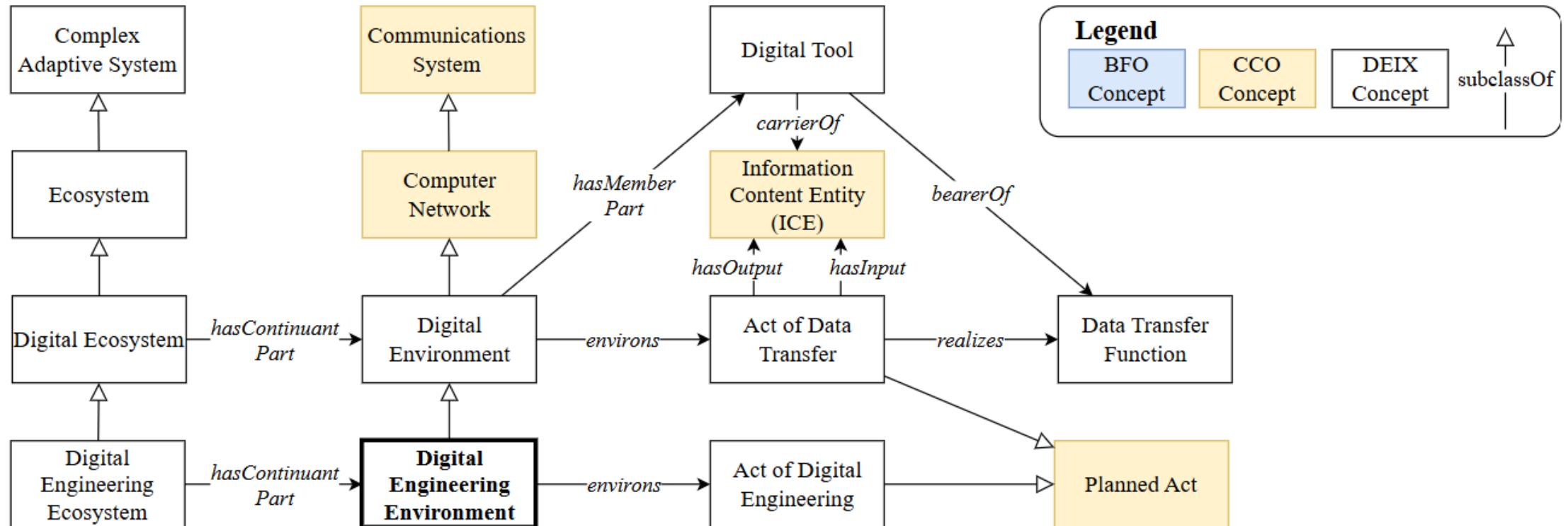
DE Concept	Definition Status
ASOT	v1 complete
ASOT Role	v1 complete
Digital Process	underway
Digital Artifact	v1 complete
Digital Asset	v1 complete
Digital Engineering (Act of)	v1 complete
Digital Engineering Ecosystem	v1 complete
Digital Engineering Environment	v1 complete
Digital Engineering Approach	v1 complete
Digital Repository	v1 complete
Digital Thread	underway
Digital Transformation	underway
Digital Twin	v1 complete
Digital Twin System	v1 complete
Digital Instance	not started
Digital Prototype	not started
Governance (Act of)	not started
Model Curation (Act of)	not started
Model-Based Engineering (Approach)	not started
Trusted Digital Repository	underway
View	v1 complete
Viewpoint	v1 complete

Thanks

- We have a core group of regular contributors – thanks to them all!
- If you are interested in contributing, reach out!
 - 1 hr / week.
 - Tend to focus on one concept for 2-3 weeks.
 - joegregory@arizona.edu

Towards a Digital Engineering Ontology to Support Information Exchange

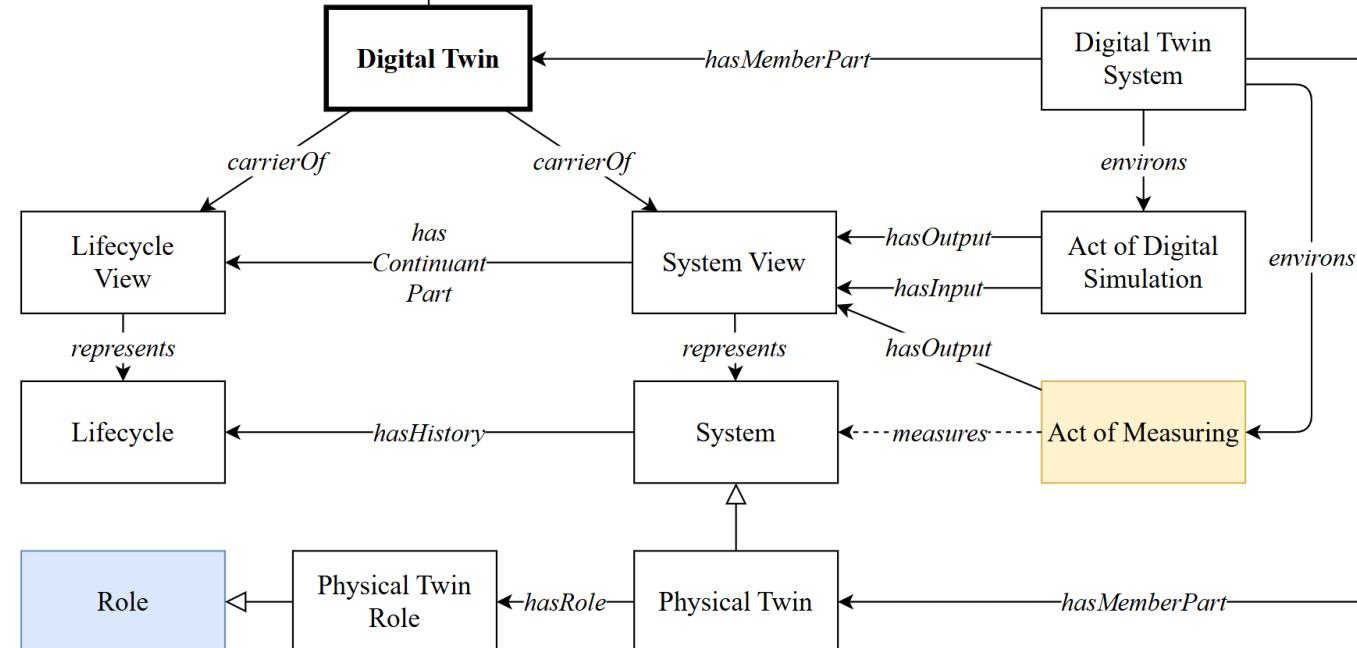
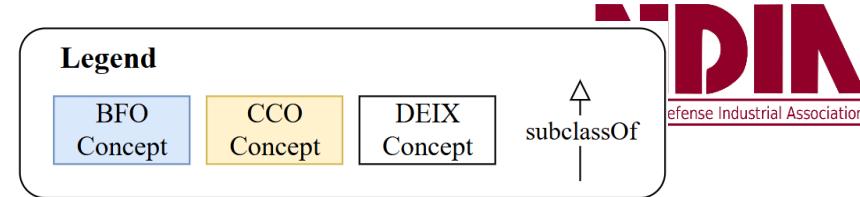
**INCOSE IS
7/28/2025**


PRESENTER **Dr. Joe Gregory** Postdoctoral Research Associate
Department of Systems & Industrial Engineering

Co-chair: Clarence (Moe) Moreland

Co-authors: James Wheaton, Celia Tseng

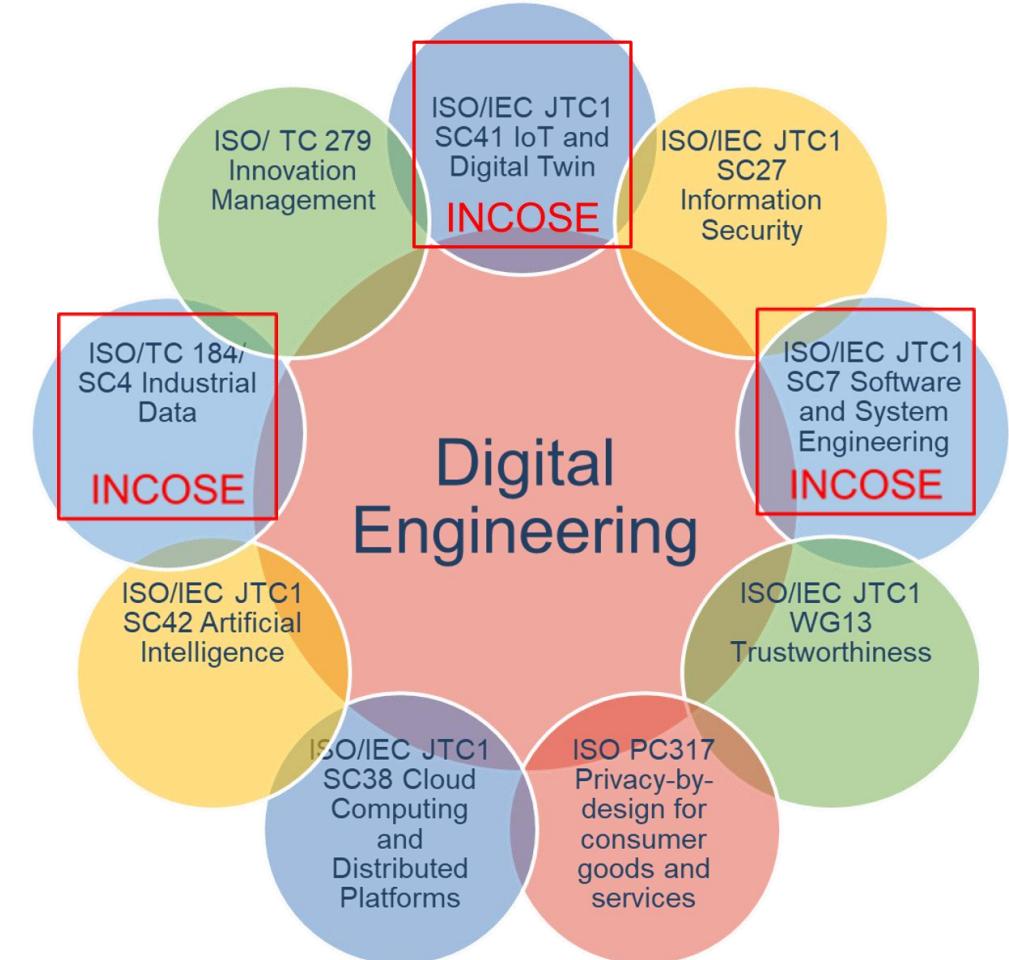
Backup



DE Ecosystem / Environment

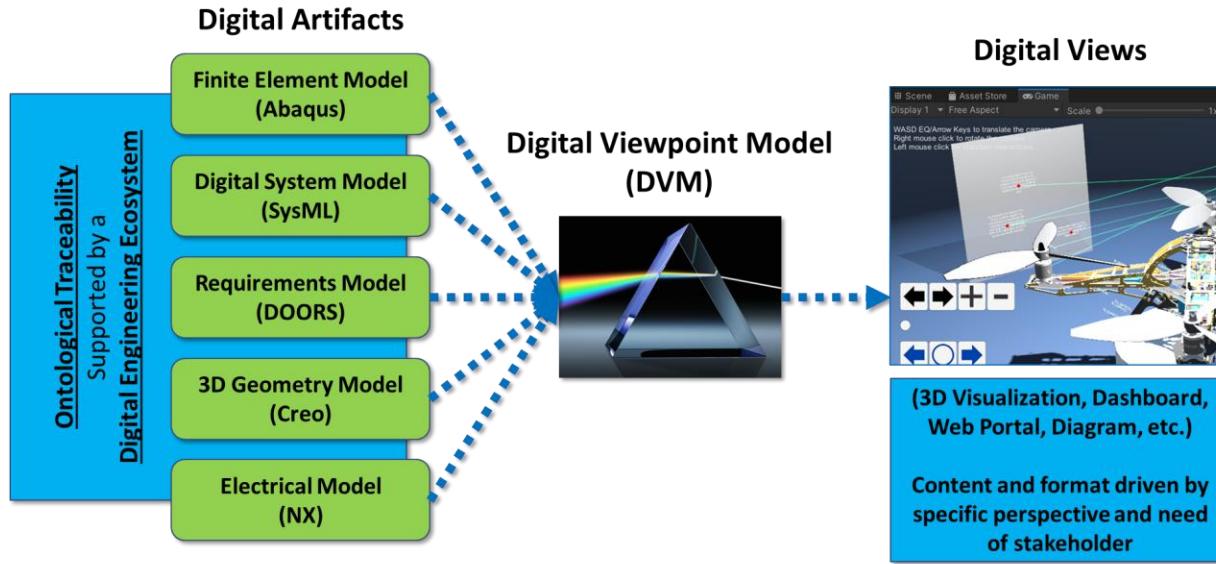
DEEnvironment(x) ≡ ComputerNetwork(x)

- Λ ∃a (DigitalTool(a) ∧ hasMemberPart(x,a))
- Λ ∃b (DigitalTool(b) ∧ hasMemberPart(x,b))
- Λ ∃c (DataTransferFunction(c) ∧ bearerOf(a,c))
- Λ ∃d (ActOfDataTransfer(d) ∧ realizes(c,d) ∧ environs(x,d))
- Λ ∃e (ActOfDigitalEngineering(e) ∧ environs(x,e))

Digital Twin



$DigitalTwin(x) \equiv DigitalArtifact(x)$



- $\wedge \exists a1 (SystemView(a1) \wedge isCarrierOf(x,a1))$
- $\wedge \exists a2 (SystemView(a2) \wedge isCarrierOf(x,a2))$
- $\wedge \exists a3 (SystemView(a3) \wedge isCarrierOf(x,a3))$
- $\wedge \exists b (System(b) \wedge represents(a1,b) \wedge represents(a2,b) \wedge represents(a3,b))$
- $\wedge \exists d (ActOfDigitalSimulation(d) \wedge hasInput(d,a1) \wedge hasOutput(d,a2))$
- $\wedge \exists e (ActOfMeasuring(e) \wedge measures(e,b) \wedge hasOutput(e,a3))$
- $\wedge \exists f (LifecycleView(f) \wedge isCarrierOf(x,f))$

DE Standard Survey

- Scope: Collaboration with ISO/IEC JTC1 SC7 AHG 6 to provide analysis of the requirements of the market for DE standard development
 - Alignment of standardization needs identified in INCOSE SE Vision 2035
 - Presented in 2023 INCOSE IS
 - Alignment of ongoing standard development activities and identify standard gaps
 - Collect SE community input via DE survey
- Outcome: Analysis report completed in Dec 2023, 2 standards proposal accepted for draft development

Digital Viewpoint Model (Lead: Ken Zhang)

While the DVM is modeled using SysML, the concepts are agnostic of any particular language, tool, or infrastructure

- The Digital Viewpoint Model (DVM) is an **implementation-agnostic (platform independent), reference framework** developed from DEIXWG
- The DVM provides a high-level framework for describing sources of digital information in a digital engineering ecosystem (DEE)
- The DVM also conceptualizes how that information can be transferred, translated, transformed, and related for the purpose of exchanging digital information between stakeholders... who might not have the same DEE infrastructure or standards

DE Guide

Key areas of focus

- Tailors ISO/IEC/IEEE 15288 process to the unique challenges presented by digital engineering
- Clearly describes digital considerations across all system lifecycle stages
- Follows format of ISO/IEC/IEEE 21840

Objectives in terms of ISO alignment and industry impact

- Sets a foundation for cross-industry collaboration
- Provides general guidance for each ISO/IEC/IEEE 15288 process and process outcome in the context of DE
- Follows similar standards alignment to ISO/IEC/IEEE 21840

How the DE Guide aims to address current challenges and gaps in digital engineering

- Bridge gap between traditional systems engineering and digital engineering practices
- Provides adaptable guidelines that evolve with digital engineering practices