A Double-Helix Model for the V&V
of Physical and Digital Twins
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V&Y for Digital Twins / Real — Time
Updated Models for Digital Twins
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Maturity Levels No Digital Twin
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Maturity Levels
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Why Physics Informed Al

Analytical Models Al Only Models

System Model Mis-
specification

Lack of Adaptability

Subject to Data
Quality

Requires Large
Quantities of Data

Not Interpretable
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Adaptable

Why Physics Informed Al

Less subject to
Physics-Informed Data Quality

Al Models

Interpretable
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Dynamical Nature of Physical/Digital
Twins

- Recognize the dual verification of the Physical to Digital Twin verification
(Associated System verifies associated models). Digital Twin verifies the
physical system (System model verifies the system).
- ldentify expected and unexpected changes in underlying system dynamics
over time and study the impact of such changes in the correctness of the
Twins.
- Twins Verification is dynamic and should happen constantly over time. A
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V&YV for Digital Twins / Analytical Models
for Digital Twin
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V&YV for Digital Twins / Black Box Models
for Digital Twin
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V&YV for Digital Twins / Conditional Model
Based Neural Networks for Digital Twin
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Analytical Models

Bayesian Parameters: Can

Fixed Models: Crafted Trainable Parameters: be updated as data is

when system is deployed Can be updated as data is
once and for all gathered

gathered. Characterizes
uncertainty of the
predictions

« Can adapt to any function in the
function space defined by the
relationships in the model.

* Totally Interpretable.
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Black-Box Models

Bayesian Parameters: Can

Fixed Models: Crafted Trainable Parameters: be updated as data is

when system is deployed Can be updated as data is
once and for all gathered

gathered. Characterizes
uncertainty of the
predictions

« Can adapt to any function through
Universal Approximation Guarantees.

 Predictability Robustness.
 Lack of Interpretability.
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Conditional Models

L Pwhite.bmf:k

Pbmck|whit9 P. ..
white

fbmck|white — E[Pbmck|wh£te]

» If Analytical Models

Black

and

Box models are defined

proba :)ilisticallgl, a conditional
e

model can be
* The conditional moc

1

C

ne robustness of th

Box models while al

iscriminate when a

C

models agreeing or

Isagreeing.

veloped.

el uses
e Black-

owing to
re both



Conclusions

» Acknowledging the dual feedback V&V loop between the
Physical and Digital twins provides a better framework for
defining the V&V activities of the integrated system.

» Acknowledging the dynamic nature of the underlying dynamics
of the system should guide the V&V activities of the twins.

 Using trainable Bayesian models improves not only the
robustness of the models by allowing them to accommodate
newly acquired data but also it allows the user to understand

how certain the model is.

* The use of conditional models leverages the benefits of
analytical and black-box models in a principled way.
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Current Verification Strategies

« Static Verifications:

Physical Twin Verification Digital Twin Verification

phs - A M M A A
f(lr) — {ﬂt+13 St+1» II5‘"1*,+’_L} |5r+1 _5t+1| < Esr+1:|ﬂr:+1 - D1%+1| < €puy

|§t+1| = €s |ﬁt+1| = €o

The sensed states and

outputs from the physical
The digital twin verifies that twin verify that the

predicted next states and outputs predictions of the digital twin
are bounded given a prescription are not too far from reality. A
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Current Validation Strategies

» Static Validation:

Physical Twin Validation

€crp = fe(@ps1) 841, 0pa1) = €cub

The realized actions, states
and outputs by the physical
twin are consfrained as per
the system objectives.

Digital Twin Validation

Ep;b = fp(ﬂt+l:5t+1:ﬂt+1) = Epub

The performance metrics
of the integrated system
are meet.



Current Verification/Validation Strategies

e Failure under Static vision

L.
=0

‘fﬂt o J@Hn‘ = 0, ‘)ﬁ?t o fﬂt+n

If the underlying dynamics evolve, the
condition above holds true and the
verified/validated twins are no longer correct.
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Allowing Trainable Models

 Trainable Parameters in White Box models (analytical models)

 Trainable Parameters in Black Box models (artificial intelligence
models)

 Probabilistic Modeling through Bayesian Updates



Some preliminary results...

« Sample data from the harmonic and the dumped harmonic
oscillator.

v
(t,y1) € Dy, t €10,10],y; = x cos(wt) + ;Osin(a)t)

Vo+x,y

(t'y,) ED,,y, = eVt <x0 cos(wgt) + sin(wdt))

« Use the harmonic oscillator as the system model and let the
MCMC algorithm discover the posterior distribution of the
parameters driving the system model.

« Construct the CMBBNN and observe if the Bayesian System
Model properly informs the predictions of the Bayesian Neural
Network.
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Some preliminary results
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