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Modern systems are more fragile than ever

We build faster than we understand, leading to uncertainty and risks

London Heathrow, March 2025
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Resilience Engineering is emerging within Systems
Engineering to understand how to navigate disruptions
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Resilience Engineering rises as a way to better understand
systems under stress, but it comes with challenges

Resilience

Pefnions)  Lack of Standardization

& Complex Dynamics and Integrations

@ Data Requirements
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Current resilience methods do not always give insight into
why disruptions happen
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Bifurcation Analysis, from Dynamic Systems Theory, studies how
small parameter variations can impact system stability
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Bifurcation Analysis is not common in Resilience Engineering
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6-Step Framework to use BA in RE
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( 1. Data

Preprocessing

» Segmentation
* Cleaning

2. System
Identification
* Model Selection

» Parameter
Estimation

3. Bifurcation
Analysis
* Equilibrium Analysis
» Parameter Variation
* Bifurcation
Identification
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To analyze a system, a system model is required
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Bifurcation Analysis benefits from the use of numerical tools
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Bifurcation Diagram of the Logistic Map
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Bifurcation Analysis benefits from the use of numerical tools
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Bifurcation Diagram of the Logistic Map
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Linking BA insights with Resilience Capabilities

5. Resilience
Analysis
* Resilience
Thresholds
* Link findings to
RE properties

6.

Report and
Document

Bifurcation Analysis

Time Series Analysis

Phase Diagram

Bifurcation Diagram
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Resilience Capabilities

Absorptive
Capabilities

High absorptive capacity is
indicated if the system
experiences a disturbance
(visible as a deviation
from a steady state) but
quickly returns to its
baseline or changes
minimally.

A system with high absorptive
capacity might show
trajectories in the phase
diagram that quickly return to
a stable orbit or fixed point
after a disturbance.

A system with high
absorptive capacity would
demonstrate similar
qualitative behavior over a
wide range of parameter
values.

Adaptive
Capabilities

A system that presents
different states and can
smoothly transition from
one to another shows high
adaptability.

A system transitioning
smoothly between different
orbits or fixed points as
conditions change suggests
high adaptability, as it can
function across a range of
dynamic states.

A system is adaptable if it
can transition smoothly
between different types of
behavior (e.g., from stable
to periodical states) as
parameters change,
indicating flexibility.

Recovery Capabilities

If the system settles into a
new pattern or fails to
stabilize after a
disturbance, it suggests
limited recovery
capability.

If paths leading back to a
stable state or fixed point
following a perturbation, it
indicates good recovery
properties. Conversely, if the
system moves to a different
attractor or becomes chaotic, it
suggests limited recovery.

Good recovery will be
shown if after passing
through a bifurcation point
and then reversing the
parameter change, the
system returns to its
original behavior. It this is
not the case, there could be
hysteresis in the system,
limiting recovery.

(Gracia Otalvaro & Watson, 2024)
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IEEE or WSCC 9 Bus is evaluated from 10% to 230% of its nominal
load

| Feature Value
RRL | Rl —
Number of buses 9
Generators 3 (located at buses 1, 2, and 3)

3 (at buses 5, 6, and 8) with

Loads nominal values at 315MW
Transformers 3 (with off-nominal tap ratios)
Transmission lines 9 (forming a meshed network)

State Vector = [V;, 6;]

Active Power MW P.; = V; X;V; Y5 cos(6; — 0; — £Y;)

Figure 1: Model of the IEEE 9 Bus System (PSCAD, 2018)
Reactive Power MVar Qei = ViX;V;Y;jsin(8; —6; — 2Y;;)
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Voltages remain predictable until 190% of nominal consumption,
where behavior changes

Bus Voltages vs P Loading
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Generator output evaluation shows the reason for change in
behavior (G2)

Generator Active Power vs P Loading
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Resilience Capabilities

Absorptive
Capabilities

High absorptive capacity is
indicated if the system
experiences a disturbance
(visible as a deviation
from a steady state) but
quickly returns to its
baseline or changes

A system with high absorptive
capacity might show
trajectories in the phase
diagram that quickly return to
a stable orbit or fixed point
after a disturbance.

A system with high
absorptive capacity would
demonstrate similar
qualitative behavior over a
wide range of parameter
values.

Adaptive
Capabilities

A system that presents
different states and can
smoothly transition from
one to another shows high
adaptability.

A system transitioning
smoothly between different
orbits or fixed points as
conditions change suggests
high adaptability, as it can
function across a range of
dynamic states.

A system is adaptable if it
can transition smoothly
between different types of
behavior (¢.g., from stable
to periodical states) as
parameters change,
indicating flexibility.

Recovery Capabilities

If the system settles into a
new pattern or fails to
stabilize after a
disturbance, it suggests
limited recovery
capability.

If paths leading back to a
stable state or fixed point
following a perturbation, it
indicates good recovery
properties. Conversely, if the
system moves to a different
attractor or becomes chaotic, it
suggests limited recovery.

Good recovery will be
shown if after passing
through a bifurcation point
and then reversing the
parameter change, the
system returns to its
original behavior. It this is
not the case, there could be
hysteresis in the system,
limiting recovery

Resilience Study: absorptive, adaptive, recovery capacities




Absorptive Capabilities: how much change can the system handle
before it changes its behavior?

Bus Voltages vs P Loading
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Adaptive Capabilities: How large is the system’s operating range?

Bus Voltages vs P Loadlng
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Recovery Capabilities: How does the system react to events?
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Conclusion

* Resilience Engineering is emerging within Systems Engineering to understand how to navigate disruptions
* Studying a system’s absorptive, adaptive, and recovery capabilities leads to resilient systems
*  Analysis tools must keep up with the complexities seen in modern systems

* Bifurcation Analysis helps SE by identifying stability thresholds and providing resilience insights

Next steps: Expanding the framework by adding more methods to it and testing it in more types of systems
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While the system remains stable, oscillatory behavior arises as
load increases

Eigenvalue Trajectories with Loading
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Bifurcation Analysis studies how small parameter variations can
impact system stability

ROV, Z,tp) = Of 0fi Ofi
at X oy oz
L&Y, Z,tp) = I=lox av ez
47 dfs dfz 0f; If Re(1) < 0, stable
f3(X:Y'Z;t;p):E -aX aY aZ—
Define System Compute Jacobian Find Eigenvalues A(p)
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1 Classical (second-order) “swing” model

Suitable when stator transients are neglected and the machine is represented by a constant internal emf

E’ behind the transient reactance X'.

Symbol

Wh

M = 2H Jw,
D

P,

(P_e =\tfrac{

6 =wy (w—1)
Mé =Py —P.— D(w—1)

Meaning

rotor electrical angle (rad)

rotor speed (p.u. of synchronous speed)

base speed (rad sfl)

inertia constant (s) with H = kinetic energy stored at rated speed (MJ/MVA)
damping coefficient

mechanical power input

E!



2 Fourth-order (transient) d-q model

Adds the dominant field-winding and damper dynamics; widely used by grid codes and IEEE model

libraries.

Mw

T;, E,

T, B =

wp (w—1)
Pn— P, — D(w—1)
*E; — (Xd - Xé) I+ Ef

—E;+ (X, — X,) 1,

31

P. = E\I, + EI,

Va— Ej

P
d X(,}
Vi E
Iq: XI
d

Parameter
By By
Tior Too
Xa, Xy
X}, X,
Va, Vg

E;

Excitation- and governor-system add-ons

The electrical field voltage E't is produced by an Automatic Voltage Regulator (AVR) and exciter,

typically modeled as:
TyEf = —Er + Kg (Ver — Vi)

Mechanical power Py, is regulated by a turbine governor (e.g., [EEE-G1, GGOV). Including these

controllers closes the electromechanical loop for long-term dynamic simulations.

Meaning

transient internal emfs (q- and d-axes)

open-circuit transient time constants

synchronous reactances

transient reactances

stator terminal voltages in the rotor frame

field voltage (output of excitation system)



3. Hopf Bifurcation

1. Saddle-Node Bifurcation Equation (2D system):
Equation: % =rr—1y— ;1;(332 + y2)
d
da , Y =z+ry—y(®+y?)
at =r+zz
Behavior:
Behavior:

» Forr < 0: stable spiral at origin

e Forr < 0: two fixed points (one stable, one unstable) . . L
+ Forr > 0: unstable spiral at origin and a stable limit cycle emerges
* Forr = (: one semi-stable fixed point (merging point)

e Forr > 0: no fixed points

4. Transcritical Bifurcation

Equation:
2. Pitchfork Bifurcation (supercritical) p
z 2
Equation: E =rr—=r
dﬁ — pp — 3 Behavior:
dt

+ Fixedpointsatex =0andxz =1
Behavior:
+ Their stability switches atr = 0:
e Forr < 0: one stable fixed pointatz = 0
¢ Forr < 0:x = Ois stable, x = r unstable
e Forr > 0: x = 0 becomes unstable, two new stable points emerge at & = i\/F

« Forr > 0:x = 0is unstable, x = r stabl
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