



**International Council on Systems Engineering**  
*A better world through a systems approach*

# When Assurance Cases Are Needed For Security

Mark Winstead PhD CSEP



INCOSE International Symposium 2025 | Ottawa, Canada

©2025 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release. Distribution unlimited 24-03432-4



Mark serves as The MITRE Corporation's Systems Security Engineering Department Chief Engineer and works with various MITRE sponsors on practice standardization efforts, including co-authoring NIST SP 800-160 Volume 1 Revision 1 *Engineering Trustworthy Secure Systems* with Ron Ross and MITRE's Michael McEvilley.

With INCOSE, Mark is co-chair of the Systems Security Engineering Working Group and cochair and security advocate on the Loss Driven Systems Engineering project. He also participates in other groups, such the FuSE Vision and Roadmap Workstream and the Resilient Systems Working group.

Mark is a graduate of the University of Virginia (PhD, Mathematics) and Florida State University (BS & MS, Mathematics). He resides in Colorado Springs, CO.

Email [mark@markwinstead.net](mailto:mark@markwinstead.net)  
or [mwinstead@mitre.org](mailto:mwinstead@mitre.org)

Mark is currently looking forward to a career next phase. In addition to remaining "on-call" with MITRE, Mark will continue work with Cal Tech's Center for Technology and Management Education, plans to increase volunteer work with INCOSE, and consult from time to time.

# Roadmap

- 1) Quick Assurance 101
- 2) When Assurance Cases Work discussion
- 3) If goal-oriented, what should the goals look like?
- 4) Shifting Policy coming?

# Assurance

Grounds for justified confidence that a claim has been or will be achieved

This confidence is achieved by applying applicable system life cycle activities, which include a planned, systematic approach with acceptable measures of system assurance and risk management of exploitable vulnerabilities ... A claims-oriented approach to assurance serves to address the concerns that are not typically captured within the requirements that focus on intended behavior [e.g., safety, security]

ISO/IEC/IEEE 15288 Clause 5.10

# Different ways to classify assurance

Weak



AXIOMATIC Assertion

- assurance by unsubstantiated or weakly substantiated declaration

ANALYTIC Test and Analysis

- assurance from accumulated evidence

SYNTHETIC Assurance Case

- assurance from reasoned and compelling evidence-based arguments

Strong

NIST SP 800-160 Volume 1 Revision 1

Axiomatic & Analytic → Prescriptive  
Synthetic → Goal-Oriented & Blended

Prescriptive

Goal Oriented

Blended

- Assurance by adherence to process or test-driven governance or demonstrating compliance
- “one size fits all”

- Assurance by adaptable outcome-driven governance, whereby goals or claims are established, and explicit argumentation is made that goals are met

- Assurance by mixing prescriptive and goal-oriented approaches

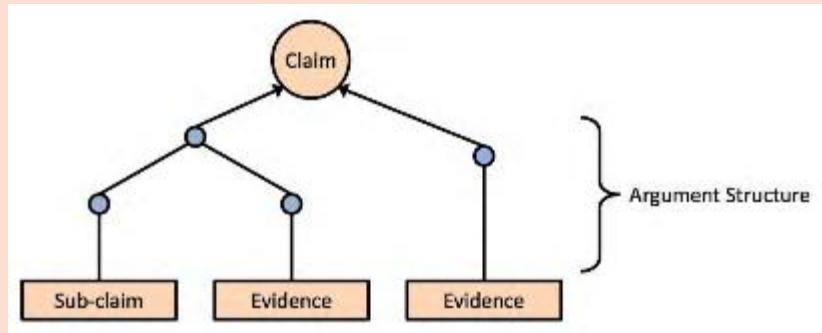
Rinehart, Knight, and Rowanhill,  
**Understanding What it Means for  
Assurance Cases to “Work”** (2017)

# Assurance Case

Structured argument, supported by a body of evidence, that provides a compelling, comprehensible, and valid case that the stated claims for a system are achieved within a set of accepted constraints

Employs the 3 Es

## Explicit Claims


- Assertions: What do you seek to achieve?

## Evidence

- Quality of data: accuracy, credibility, relevance, sufficiency

## Expertise

- Competency: About the subject addressed by the claim and in all supporting evidence



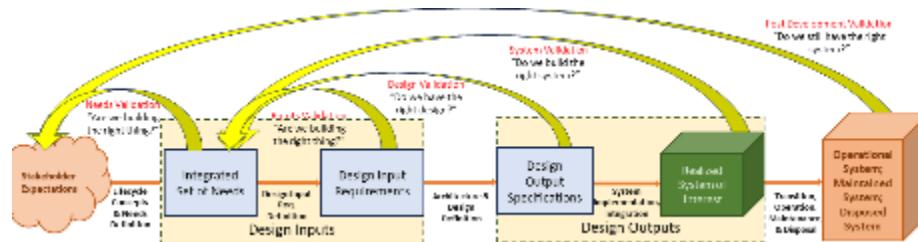
Contrasts with Axiomatic (follow a process) and Analytics



versus



incose.org | 6

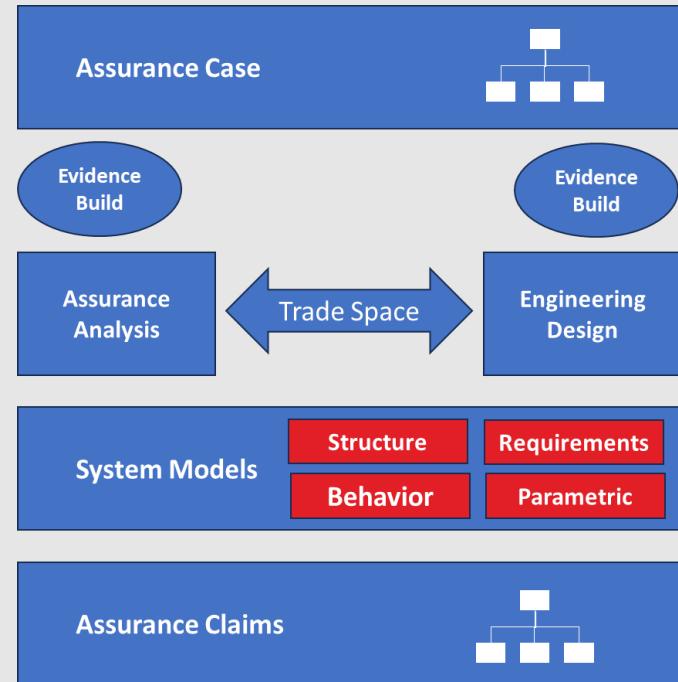

# Some Assurance Case Advantages

“An assurance case can identify gaps in requirements coverage and inform the development of derived requirements to address those gaps” ISO/IEC/IEEE 15288:2023 Clause 5.10

“Construction of an assurance case can be helpful to provide insight for verification activities and to present verification results 15288 Clause 6.4.9

“Construction of an assurance case can be helpful to provide insight for validation activities and to present validation results” 15288 Clause 6.4.11

“Establishing an assurance case can be applied to guide quality assurance activities and to help ensure critical quality characteristics are considered” 15288 Clause 6.3.8




The assurance case is the enabling mechanism to show that the system will meet its prioritized requirements, and that it will operate as intended in the operational environment, minimizing the risk of being exploited through weaknesses and vulnerabilities ...

the assurance case is a critical mechanism for supporting the risk management process ...

In systems engineering, the activities for developing and maintaining the assurance case enable rational decision making, so that only the actions necessary to provide adequate justification (arguments and evidence) are performed.

## **- NATO Standard AEP-67 Engineering for System Assurance in NATO Programmes' Executive Summary**



Adaptation of NASA's Model Based Mission Assurance Vision

# When Do Assurance Cases Work?

NASA CR-2017-219582



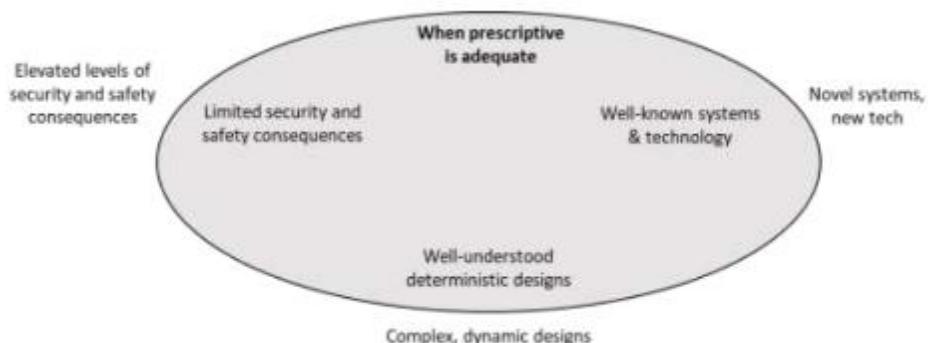
Understanding What It Means for Assurance Cases to "Work"

David J. Rinehart  
Aerospace Technology Division, Pasadena, California  
John C. Rinehart and Jonathan Rinehart  
Aerospace Consulting, Chatsworth, England

Rinehart, et al 2017 examined case studies and interviewed SMEs to examine claims about Assurance Cases

Apr 1 2017

| Claim                                                                                  | Result                                                                     |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| <b>Fundamental:</b> Assurance cases (ACs) are successful where suitable                | Well-founded historically and by expert consensus                          |
| <b>Benefit:</b> ACs are more comprehensive than conventional methods alone             | Easily substantiated                                                       |
| <b>Benefit:</b> ACs improve the allocation of responsibility over prior norms          | Appears well backed                                                        |
| <b>Benefit:</b> ACs organize information more effectively than conventional methods    | True with caveats. The notional rigor often needed impedes accessibility   |
| <b>Benefit:</b> ACs address modern certification challenges                            | Largely well-supported, especially for complexity and technical innovation |
| <b>Benefit:</b> ACs offer an efficient certification path compared to other approaches | Maybe, once an organization has experience                                 |
| <b>Benefit:</b> ACs provide a practical, robust way to establish due diligence         | Appears well-founded                                                       |


# Prescriptive vs Goal-Oriented

Or

Adherence to process, tests, or compliance vs. Assurance by adaptable outcome-driven governance

Prescriptive is preferable when adequate due to its “complete the checklist” approaches that enable high confidence in completing authorizations on time

| Prescriptive adequate when                                                                        | Goal-oriented/blended <sup>1</sup> necessary when                                                                        |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Using well-established technology                                                                 | Using novel systems and innovative technology                                                                            |
| Using straightforward and predictable design (simple design)                                      | Systems have complex and non-intuitive design                                                                            |
| Safety and security consequences are limited due to low level of safety/security responsibilities | Systems have elevated security and safety responsibilities with elevated failure consequences (safety/security-critical) |



<sup>1</sup>Blended *may* suffice when subsystems or elements satisfy prescriptive adequacy properties

Adapted from



# Challenges with Defense (and other) Systems and Prescriptive Approaches

- Use of emerging technologies and technologies often developed for limited use (e.g., military), such technologies are often new and innovative.
  - True for space systems, other unique mission systems
- Complexity, especially for those purposes unique to the community (e.g., military in nature)
  - Not unique to defense
- Needs to preserve technology secrecy further complicates a system.
  - Commercial interests may have intellectual property interests to protect
- Needs to protect the means and methods used to acquire information that inform development of the technology and the use of the system.
- The intended use and opposition to that use often mean the systems have severe security-related consequences including those associated with failures and erroneous behaviors and outcomes.
  - Often true for cyber physical systems controlling large force/energy (critical infrastructure)
- Having a “by design” destructive intent, making it necessary to ensure the destructive capability is used only for the intended manner and results in intended destruction.
- Prevent the exposure of technology that provides combative advantages.
  - Commercial interests have concerns about competitive advantages

DEPARTMENT OF DEFENSE  
Secure Cyber Resilient Engineering (SCRE)  
White Paper Series  
Concepts for Assurance Cases for  
Adequately Secure and Resilient Systems



February 2014  
System Security  
Office of the Under Secretary of Defense for Research and Engineering  
Prepared by The MITRE Corporation

Document Generated at Approved by DODR&E: DODR&E-14-0170 (update 01/16/2014)

***Complex, innovative, and security-critical***

## If goal-oriented, what should the goals be?

NIST SP 800-160 Vol 1 Rev1 identified three essential items that characterize an ideally secure system:

- Delivering required system capability despite adversity (i.e., negative influences) within foreseeable operating conditions.
- Ensuring that the intended and only the intended behaviors and outcomes occur.
- Ensuring only authorized interactions and operations of the system occur, initiated by authorized entities either outside or inside the system.
  - In other words, the system enforces complete mediated access.



# Overarching Properties

## Intent, Correctness, Innocuity, and Evolvability

- Claims are about properties
- Borrowing from work involving NASA and FAA, four overarching properties to make claims about are recommended
  - **Intent (specification of intended behavior):** The defined intended behavior is correct and complete with respect to the desired behavior *for authorized entities*.
  - **Correctness (implementation of correct behavior):** The implementation is correct with respect to its defined intended behavior, under foreseeable operating conditions.
  - **Innocuity (security of the unintended behavior):** Any part of the implementation that the defined intended behavior does not require has no unacceptable impact and only authorized entities invoke such implementation.
  - **Evolvable:** The design and implementation enable modifications and other changes in a manner that achieves intent, correctness, and innocuity at comparable levels of assurance across the lifecycle.

C. M. Holloway, "Understanding the Overarching Properties NASA/TM-2019-220292," National Aeronautics and Space Administration, Hampton VA, 2019.

Z. Daw, S. Beecher, M. Holloway and M. Graydon, "Overarching Properties as means of compliance: An industrial case study," in *2021 IEEE/AIAA 40th Digital Avionics Systems Conference*, San Antonio TX USA, 2021.

DEPARTMENT OF DEFENSE

Secure Cyber Resilient Engineering (SCRE)

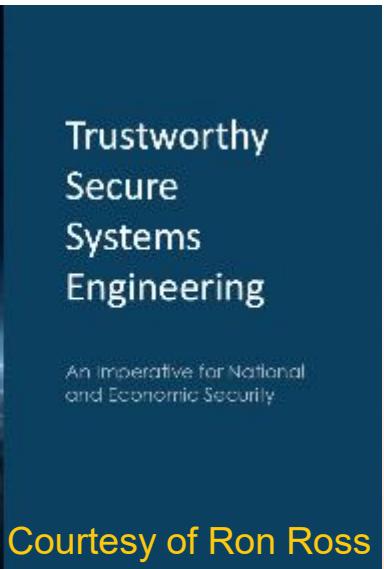
White Paper Series

Overarching Properties for Determining Assurance Claims



November 2024

System Security


Office of the Under Secretary of Defense for Research and Engineering  
Prepared by The MITRE Corporation

Distribution Statement A: Approved for public release. DOPSR case #25-T-0843 applies.  
Distribution is unlimited.



# What's Next?

Briefly on movement to change “tradition”



Courtesy of Ron Ross



# Current Prescriptive Means Are Known to be Inadequate



## Protecting Mission Critical Systems The Need for a Shift in Culture, Strategy, and Process

INCOSE's 2024 Annual Report, *Protecting Mission Critical Systems: The Need for a Shift in Culture, Strategy, and Process*, is now available. This report is the result of a year-long effort by the INCOSE Space Systems Engineering Working Group to identify the challenges and opportunities for protecting mission-critical systems. The report is intended to provide a comprehensive overview of the current state of mission-critical system protection and to identify areas for improvement. The report is available for download at [www.incosenew.org/protecting-mission-critical-systems](https://www.incosenew.org/protecting-mission-critical-systems).

**INTRODUCTION**  
In this report, the authors present a comprehensive approach for protecting mission-critical systems. The report is the result of a year-long effort by the INCOSE Space Systems Engineering Working Group to identify the challenges and opportunities for protecting mission-critical systems. The report is intended to provide a comprehensive overview of the current state of mission-critical system protection and to identify areas for improvement. The report is available for download at [www.incosenew.org/protecting-mission-critical-systems](https://www.incosenew.org/protecting-mission-critical-systems).

**OVERVIEW**  
The report is organized into four main sections: **INCOSE's 2024 Annual Report, *Protecting Mission Critical Systems: The Need for a Shift in Culture, Strategy, and Process***. The report is the result of a year-long effort by the INCOSE Space Systems Engineering Working Group to identify the challenges and opportunities for protecting mission-critical systems. The report is intended to provide a comprehensive overview of the current state of mission-critical system protection and to identify areas for improvement. The report is available for download at [www.incosenew.org/protecting-mission-critical-systems](https://www.incosenew.org/protecting-mission-critical-systems).

Ron Ross and Kymie Tan, **Protecting Mission Critical Systems**

©2025 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release. Distribution unlimited 24-03432-4

INCOSE

Space Systems

Engineering

Working Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

Space

Systems

Engineering

Working

Group

INCOSE

# Moving Forward



NIST SP 800-160 Vol 1 Rev 1, a systems engineering approach, focuses on evidence-based assurance (i.e., assurance case)

Figure 1 illustrates the 6 key pillars of the TSSE ecosystem.

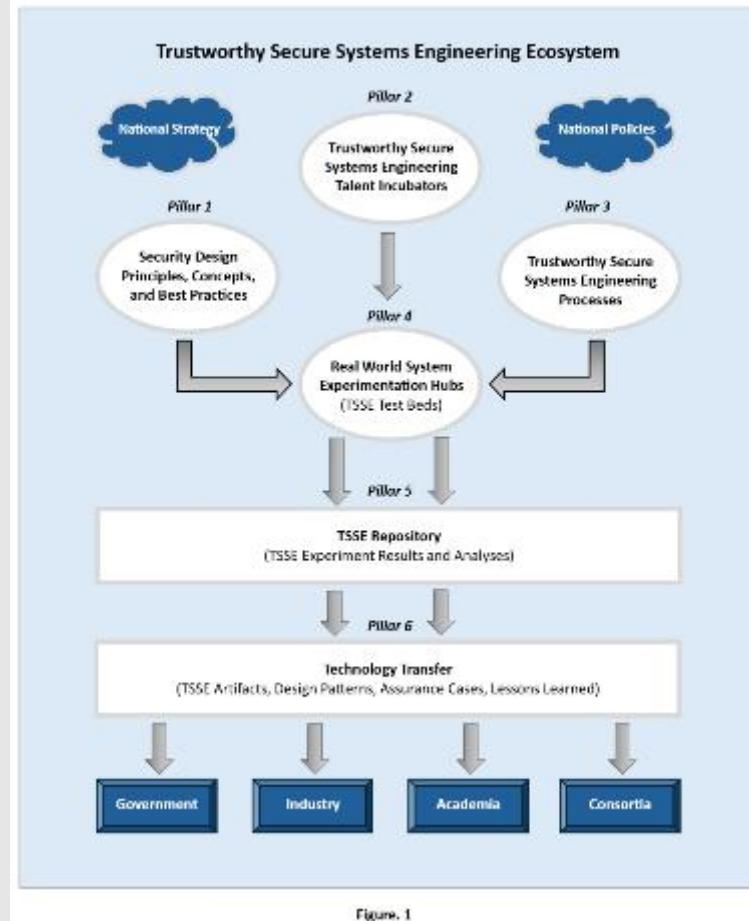



Figure 1

# Questions/Discussion