
©
 D

as
sa

ul
t S

ys
tè

m
es

 |
C

on
fid

en
tia

l I
nf

or
m

at
io

n
| 7

/2
7/

20
25

| r
ef

.:
3D

S
_D

oc
um

en
t_

20
22

1

Taming the Beast:
Best Practices of
Extending SysML V2

Dr. Aurelijus Morkevicius

Gintare Krisciuniene

International Council on Systems Engineering
A better world through a systems approach

INCOSE International Symposium 2025 | Ottawa, Canada

©
 D

as
sa

ul
t S

ys
tè

m
es

 |
C

on
fid

en
tia

l I
nf

or
m

at
io

n
| 7

/2
7/

20
25

 |
re

f.:
 3

D
S

_D
oc

um
en

t_
20

22

2

Hello.
Aurelijus Morkevicius

CATIA Systems – MBSE Consulting Director

Gintare Krisciuniene

CATIA Systems Modeling Application Manager

• PhD, MS, and BS in Software Systems Engineering

• 20 years in Software and Systems Engineering

• UAF co-chairman in OMG, member of INCOSE and NATO ACaT

• Chair of Enterprise Systems Engineering WG in INCOSE

• Originator of the MagicGrid Framework

• CSEP, OCSMP, OCEB, OCUP certified professional

incose.org | 3

Today’s
Agenda

• Why This Topic?

• Standard Model Libraries for UAF V2

• Limitations and Best Practices of

Extending SysML V2

• Summary

incose.org | 4

Introduction

incose.org | 5

Why this topic?

• Developing Standard SysML V2 Extensions to Unified Architecture Framework (UAF) V2 – a first real,

large-scope test of SysML V2 extendibility.

• UAF is a Standard…

• To develop architectural descriptions of enterprises in commercial industries, federal governments and military

organizations

• Engineered systems include products, services and enterprises (INCOSE-TP-2020-002-06 | 22 July 2019).

• “Enterprise” is intended to mean a large undertaking, especially one of large scope, complication and risk – “a

complex web of interactions distributed across geography and time” (Rebovitch & White, 2011).

• developed by Object Management Group (OMG) with the leadership from Dassault Systemes, Lockheed Martin and

INCOSE

• international ISO standard ISO/IEC 19540:1 and ISO/IEC 19540:2

• current version of UAF specification is 1.2 https://www.omg.org/spec/UAF/1.2/About-UAF

• Majority (over 90%) of SysML V1 users have custom profiles, diagrams, and DSL customizations.

• What to consider when setting-up transformation strategy for V2?

Copyright © 2025 by Aurelijus Morkevicius, Gintarė Krisciuniene. Permission granted to INCOSE to publish and use.

incose.org | 6

UAF V2 drivers

incose.org | 7

UAF specification at a glance
UAF Modeling Language (UAFSML) based on SysML V2

5

SML – Standard Model Libraries

UAF V2 MM

SysML

V1

(3)

UAF v2 Modeling

Language based

on SysML V1

(Profile)

SysML V2

(5)

UAF v2

Modeling

Language

based on SysML

V2 (Model

Libraries)

incose.org | 8

UAF V2
Standard Model Libraries (SML)

incose.org | 9

Why SysML V2?

• Increase adoption and effectiveness of MBSE with SysML by enhancing…

• Precision and expressiveness of the language

• Consistency and integration among language concepts

• Interoperability with other engineering models and tools

• Usability by model developers and consumers

• Extensibility to support domain specific applications

• Migration path for SysML v1 users and implementors

• Comparing SysML v2 with SysML v1:

• Simpler to learn and use

• More precise

• More expressive

• More extensible

• More interoperable

incose.org | 10

Organization (Modular Approach)

• Core Library, for cross cutting concepts

• Viewpoint Libraries for different viewpoints of the framework

• Interrelated together

• Specialized Libraries, e.g. Model-based Acquisition, Mission

Architecture, Resilience, Safety, etc.

• Metadata

Copyright © 2025 OMG. All rights reserved.

11

Views and Viewpoints: Grid as a Model!
viewpoint def <'Op-Sr'> 'Operational Structure' {

doc /* Shows composition and aggregation hierarchies of Operational Agents. */
ref #aspect :>> aspects : Sr [1];
concern def OperationalStructureConcern {

doc /* Operational structure used to support a capability(ies). */
stakeholder enterpriseArchitects : Stakeholders::'Enterprise Architect' [0..*];
stakeholder systemsEngineers : Stakeholders::'Systems Engineer' [0..*];
stakeholder businessArchitects : Stakeholders::'Business Architect' [0..*];

}
frame concern operationalStructureConcern : OperationalStructureConcern;

}
view def 'Operational Structure View' {

viewpoint :>> Operational::operationalStructure;
filter istype OperationalMetadata::operationalConfiguration or istype OperationalMetadata::operationalPerformer;
render asTreeDiagram;

}
viewpoint def <Op> Operational :> Viewpoint {

doc Description
 /* Illustrates the Logical Architecture of the enterprise. Describes the requirements,

* operational behavior, structure, and exchanges required to support (exhibit)
* capabilities. Defines all operational elements in an implementation/solution
* independent manner. */

concern def 'Defined Architecture' {
stakeholder enterpriseArchitects : Stakeholders::'Enterprise Architect' [0..*];

}
frame concern definedArchitecture : 'Defined Architecture';
viewpoint operationalTaxonomy : 'Operational Taxonomy' :> 'view specifications’;

 }
view 'Operational Structure Diagram' : ViewSpecifications::'Operational Structure View' {

expose OperationalUserModel::rescueContext::**;
}

Copyright © 2024 OMG. All rights reserved.

9

V
ie

w
p

o
in

t
V

ie
w

S
p

e
c
if
ic

a
ti
o

n
V

ie
w

U
s
e

r

M
o

d
e

l

13

©
 D

a
s
s
a

u
lt
 S

y
s
tè

m
e

s
 |

 C
o

n
fi
d

e
n

ti
a

l
In

fo
rm

a
ti
o

n
 |
 2

0
2

5

Operational Library

public import CoreLibrary::*;

abstract part def OperationalAgent :> Desirer, CapableElement, OperationalAsset, SubjectOfOperationalRule, OperationalConnectableElement {
 doc /*
 * An abstract type grouping OperationalArchitecture and OperationalPerformer.
 */
 part operationalParts[*] : OperationalAgent :> operationalFeatures :>> subparts;
 port operationalPorts[*] : OperationalPort :> operationalFeatures :>> ownedPorts;
 abstract occurrence operationalFeatures[*] : OperationalConnectableElement;
 action :>> ownedActions = (operationalActivities, operationalStates);
 action operationalActivities : OperationalActivity[*] :> ownedActions;
 perform action performedOperationalActivities : OperationalActivity[*];
 state operationalStates : OperationalStateDescription [*] :>> ownedStates;
 exhibit state performedOperationalStates[*] : OperationalStateDescription;
 connection operationalConnectors[*] : OperationalConnector connect operationalFeatures to operationalFeatures;
 include use case performedOperationalUseCases : OperationalUseCase[0..*];
}

part def OperationalPerformer :> OperationalAgent{
 doc /*
 * A logical agent that IsCapableToPerform OperationalActivities which produce, consume, and process Resources.
 */
}

action def OperationalActivity :> Process, SubjectOfOperationalRule, OperationalConnectableElement, OperationalUseCaseScenario {
 doc /*
 * An Activity that captures a logical process, specified independently of how the process is carried out.
 */
 out item outPin [*] : OperationalExchangeItem;
 in item inPin [*] : OperationalExchangeItem ;
 action operationalActivityActions[*] : OperationalActivity = subactions -> ControlFunctions::select {
 in act; act istype OperationalActivity} ;
 succession flow operationalActivityEdges[*] : OperationalExchange from
 operationalActivityActions.outPin to operationalActivityActions.inPin;
}

Operational Metadata

public import OperationalLibrary::*;

metadata def <operationalPerformer> OperationalPerformerMetadata :> SemanticMetadata{
 :> annotatedElement : SysML::PartDefinition;

 :> annotatedElement : SysML::PartUsage;
 :>> baseType =

if (annotatedElement istype SysML::PartDefinition)?
 OperationalPerformer meta SysML::PartDefinition else
 OperationalAgent::operationalRoles meta SysML::PartUsage;

 }
metadata def <operationalActivity> operationalActivityMetadata :> SemanticMetadata {
 :> annotatedElement : SysML::ActionDefinition;
 :> annotatedElement : SysML::ActionUsage;
 :>> baseType =

if (annotatedElement istype SysML::ActionDefinition)?
 OperationalActivity meta SysML::ActionDefinition else

 OperationalActivity::operationalActivityActions meta SysML::ActionUsage;
}

}

Operational Example
Textual Notation

#operationalConfiguration part rescueContext {
 #operationalPerformer part pid: DistressedParty{
 #operationalActivity perform RescueActivity.SendDistressSignal;
 }
 #operationalPerformer part rscr: RescuerPh1 {
 #operationalActivity perform RescueActivity.ReceiveDistressSignal;
 }
 #operationalConnector connection cbhd : ConnectionBetweenHubAndDevice connect pid to rscr {
 perform RescueActivity.ObjectFlowWithDM;
 }
}
#operationalActivity action RescueActivity {
 #operationalActivity action SendDistressSignal {
 out : DistressSignal :>> outPin ;
 }
 #operationalActivity action ReceiveDistressSignal {
 in : DistressSignal :>> inPin ;
 }
 #operationalExchange succession flow ObjectFlowWithDM : DistressMessage from SendDistressSignal.outPin to ReceiveDistressSignal.inPin;
}

#operationalPerformer part def RescuerPh1;
#operationalPerformer part def DistressedParty;
#operationalInformation item def DistressSignal;
#operationalExchange flow def DistressMessage {
 end :>> informationSource : DistressedParty;
 end :>> informationTarget : RescuerPh1;
 ref :>> conveyedItem : DistressSignal;
}
#operationalConnector connection def ConnectionBetweenHubAndDevice {
 end part hub : RescuerPh1 :>> connectionSource;
 end part device : DistressedParty :>> connectionTarget;
 #operationalExchange flow ds : DistressMessage {
 end ::> device;
 end ::> hub;
}

Definitions

Usages

Operational Example
Graphical Notation

incose.org | 18

Limitations and Best practices of
extending SysML V2

Metadatas

• Use of metadata (similar to stereotypes in SysML 1.x) is challenging

• Requires metadata definition for every concept which is already defined in the library.

• Using metadata keywords without SysML V2 standard keywords in the textual notation is not possible. You are still required to

use SysML keywords e.g. Item when defining UAF concepts e.g. Capability.

• Enterprise Architects and other non-SE roles will be forced to learn SysML concepts to use textual notation. Same for any other

domain specific extension.

• Easier to handle on the graphical notation

Fewer Concepts

• Fewer concepts. Every semantically rich element in SysML V2 can be modelled as a part, as a

definition by adding the keyword def, and as an Individual adding keyword individual. For

example, Operational Performer is a part and Operational Performer def is the definition.

metadata def <operationalPerformer> OperationalPerformerMetadata :> SemanticMetadata{
 :> annotatedElement : SysML::PartDefinition;

 :> annotatedElement : SysML::PartUsage;
 :>> baseType =

 if (annotatedElement istype SysML::PartDefinition)?
 OperationalPerformer meta SysML::PartDefinition else
 OperationalAgent::operationalRoles meta SysML::PartUsage;

}

#operationalPerformer part def RescuerPh1;
#operationalPerformer part def DistressedParty;
#operationalConfiguration part RescueContext{
 #operationalPerformer part rscr : RescuerPh1;
 #operationalPerformer part pid : DistressedParty;
}

Definitions

• SysML promise a language that allows end user to model usage scenarios without using

definitions.

• With libraries, usages need to be typed by definitions in most of the cases. Why?

• If no definition defined by the user, definition from library should be used.

• Use of metadatas can help to avoid using definitions from the library.

#requiredServiceLevel requirement purchasingServiceRequirements : RequiredServiceLevel{
 subject p :> purchasing;
 require constraint {
 p.POCreationTime <= 72[h]
 }
 require constraint {
 p.orderFulfillmentTime <= 120[h]
 }

}

requirement def RequiredServiceLevel :> PropertySet{
 doc /* ... */
 subject requiredServiceLevelSubject : Service;
 }

Different Layers of Abstractions

• There is no formalism in SysML V2 to model traces between different layers of abstraction.

• In SysML V2 a Dependency relationship is defined; however, it has no semantics.

• How to connect two decoupled levels of abstraction?

• Connect using . notation without having a common context. Implications?

#operationalConfiguration part AirportTerminal {
 #operationalPerformer part gs : GroundSystem;
 #operationalPerformer part oac : Aircraft;
 #operationalConnector connection gsTooAC : PushBack connect gs to oac{
 ref provider :>> groundSystem :> gs;

ref consumer :>> operatedAC :> oac;
}

#resourceConfiguration part Terminal{
 #resourceArtifact part atvs: AircraftTowingVehileSystem;
 #resourceArtifact part airbus320 : Airbus320;
}
#implements allocation a
 allocate Terminal.atvs to AirportTerminal.gs :> ResourceAgentImplementsOperationalAgent;

Time Slices and Snapshots

• The Time slice and Snapshot concepts introduce a very different method of handling individuals

than in SysML V1.

• It perfectly fits UAF needs for enterprise and project planning.

individual #project part def CameoSimToolkit :> SoftwareDeploymentProject{
 timeslice #project CST2024x {
 :>> startShot : AbsoluteMilestone {:>> date { :>> val = "2024-01-01T12:30:24Z";}} :>
 softwareDeploymentProjectMilestone;
 :>> endShot : AbsoluteMilestone {:>> date {:>> val = "2029-12-31T12:30:24Z";}} :>
 softwareDeploymentProjectMilestone;
 :> projectKind = projectKind::Project;
 snapshot #absoluteMilestone SB_2024x :> softwareDeploymentProjectMilestone {

 :>> date = "2024-12-07T10:30:24Z";

 :>> versionReleased : CameoSimToolkit2024xSB;
 :>> requirements = SoftwareDevStatus::completed;
 :>> design = SoftwareDevStatus::completed;
 :>> implementation = SoftwareDevStatus::completed;
 :>> testing = SoftwareDevStatus::inProgress;
 :>> maintainance = SoftwareDevStatus::noStatus;
 }
 }

Time Slices and Snapshots Example
Graphical Notation

Library Constraints

• Libraries are powerful tool to define domain specific extensions. However, there are some things

to be aware of:

• Library constraints are up to the tool vendor. Beware that instead of warning about incorrect

relation end SysML V2 would compile and apply missing type to the incorrect end type

making the wrong model right!

allocation def Presents :> PropertySet {
 end presentingElement : Driver :>> source ;
 end presentedElement : Challenge :>> target;
}

abstract item def MotivationalElement :> PropertySet{
 doc /*
 * An abstract kind of element in the model that provides the reason or reasons
one has for acting or behaving in a particular way.
 */
 ref item motivationalRoles [*] : MotivationalElement;
}

Best Practices of Using Metadatas

• You cannot avoid using Metadatas -> use it for your benefit.

• Metedata constraints

• Graphical annotation with keywords

• Searching model

• Annotations

metadata def <operationalPerformer> OperationalPerformerMetadata :> SemanticMetadata{
 :> annotatedElement : SysML::PartDefinition;

 :> annotatedElement : SysML::PartUsage;
 :>> baseType =

 if (annotatedElement istype SysML::PartDefinition)?
 OperationalPerformer meta SysML::PartDefinition else
 OperationalAgent::operationalRoles meta SysML::PartUsage;

}

Metadatas (2)

• Operations defined on the metatypes in the KerML

specification, are not available(accessible) for the

end user.

• Of these the most important for the extensibility are

KerML::Type::allSupertypes() ,

KerML::Type::specializes()

• Cannot evaluate baseType expression:

metadata def <opportunity> OpportunityMetadata1 :> SemanticMetadata {
 :> annotatedElement : SysML::ItemDefinition;
 :> annotatedElement : SysML::ItemUsage;
 :>> baseType =

if (annotatedElement istype SysML::ItemDefinition)
 ? Opportunity meta SysML::ItemDefinition

 else if (annotatedElement.owner as KerML::Feature).specializes.{in f : Expression; f(Initiative meta SysML::Definition)}
 ? Initiative::opportunities metaSysML::ItemUsage

else if (annotatedElement.owner as KerML::Feature).specializes.{in f : Expression; f(Challenge meta SysML::Definition)}
 ? Challenge::motivatingOpportunity meta SysML::ItemUsage

 else opportunities metaSysML::ItemUsage;
}

Tag Definitions

• Tags are a part of the library

• annotation features -> part of metadatas

Annotation Feature

–Part of the

metadata

Model Feature

-Part the library

incose.org | 29

Summary

incose.org | 30

Conclusions

• A few significant improvements, such as time bound individuals support and a powerful libraries

mechanism to define extensions, promise UAF V2 to be more precise and expressive.

• Some outstanding issues need to be fixed to fully support our needs. We are working closely with

SysML V2 to make these fixes priority to keep us on the schedule.

• Identified differences between V1 and V2 introduce some concerns, including how new ways of

modeling will be perceived by the community and how tool vendors will be able to hide the

increased complexity of the language.

• To ensure that all UAF tools handle some situations, like Operational Exchanges (ItemFlows) the

same way, patterns must be defined as part of the UAF specification

• No migrators will handle domain specific extensions. Mapping of existing extensions in V1 to V2

is manual work. Perhaps AI could do it?.

Copyright © 2025 by Aurelijus Morkevicius, Gintarė Krisciuniene. Permission granted to INCOSE to publish and use.

incose.org | 31 aurelijus.morkevicius@3ds.com

Thank You!

