

International Council on Systems Engineering
A better world through a systems approach

A Proposed Capability Package for Preventing Hardware-Specific Cyber Attacks in Critical Infrastructure

Irem Gultekin Chiappone, Ph.D. Candidate

Reginald U. Bailey, Ph.D.

This material is abstracted from a dissertation currently in work for The George Washington University in partial fulfillment of the requirements for the Doctor of Philosophy degree.

INCOSE International Symposium 2025 | Ottawa, Canada

About the Speaker

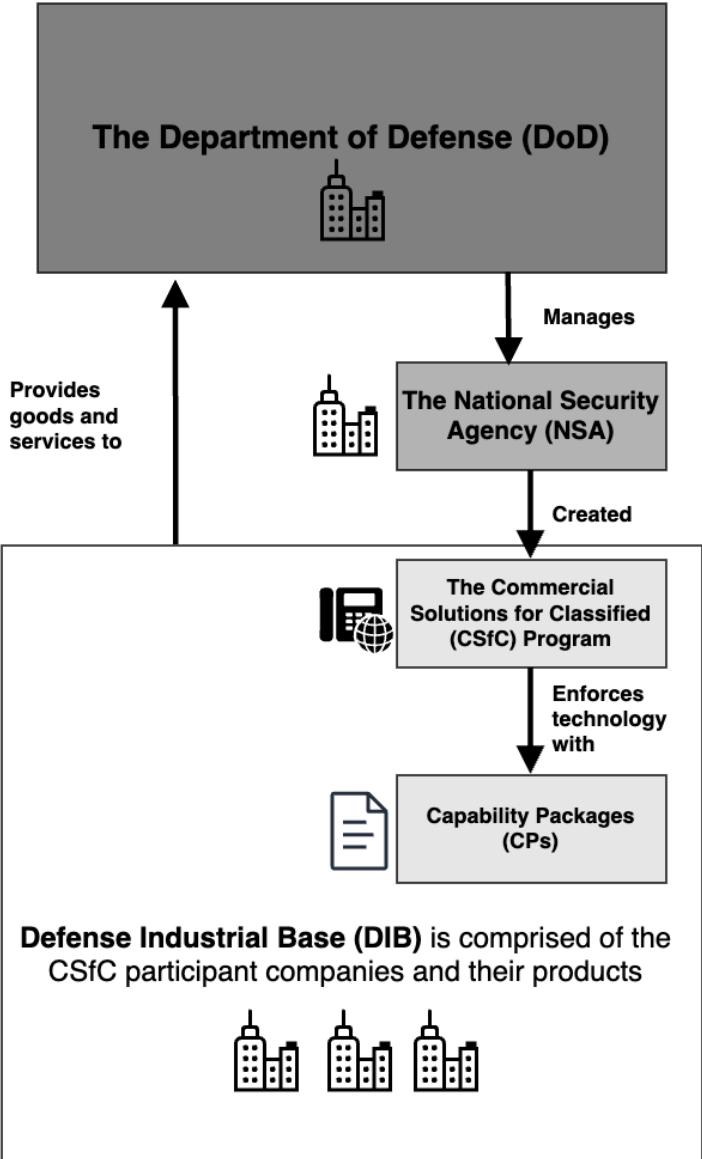
RIT
Rochester
Institute of
Technology

**THE GEORGE
WASHINGTON
UNIVERSITY**

WASHINGTON, DC

amazon

Today's Agenda


- 1. Introduction**
- 2. Research Motivation, Challenges**
- 3. Problem Statement, Proposed Solution**
- 4. What Success Looks Like, Intended Benefits**
- 5. Research Methods**
- 6. Preliminary Findings and Capability Package Framework**
- 7. Conclusion & Next Steps**
- 8. Q&A**

Introduction

The Defense Industrial Base: Over 300,000 professionals, critical in protecting national security.

Capability Packages:

- Developed by NSA/DoD to help implement secure solutions in classified environments
- Includes: threat scenarios, configuration guidance, implementation options
- They are both prescriptive and adaptable, helping reduce ambiguity in complex systems.
- We propose adapting this concept to hardware cybersecurity for the Defense Industrial Base (DIB), which in turn provides technology, products, and services to the DoD.

Introduction

*Fig 1: Satellite relay to space vehicles. Credit: SpaceLink
(eosspacelink.com)*

Why Focus on the Defense Industrial Base (DIB)?

- Heavy Reliance on Classified Communication: DIB uses CSfC-approved components more than any other critical infrastructure sector.
- Complex Supply Chain & Integration Environment: Thousands of contractors and subcontractors each possessing different levels of security maturity.
- Lack of Unified, Prescriptive Hardware Security Guidance: Existing standards (NIST, CMMC) focus largely on software or policy; DIB needs specific guidance for hardware protection.

Research Motivation & Current Challenges

Where Existing Frameworks Fall Short

Framework	Focus	Hardware Coverage	Applicability to DIB
NIST 800-53	Broad cybersecurity controls	Minimal hardware-specific guidance	Partially useful
CMMC	Supply chain and maturity	Software-heavy, light on hardware	Some relevance
CSfC	Classified comms	Strong, but classified use only	Not open to industry
CISA Best Practices	General awareness	Reactive, non-prescriptive	Inconsistent uptake

Problem Statement & Proposed Solution

Current Problems

- Defense Industrial Base (DIB) comprises hardware and integrated systems for classified communication, including:
 - **Satellite relays**
 - **Missile defense systems**
 - **The military**
 - **Defense contractors**
- Despite growing threats, hardware-specific cybersecurity methodologies remain underdeveloped.

Proposed Solution

- Framework, based on CSfC's Capability Package (CP) for ease of use and guidance.
- Fill the gaps with critical hardware methodologies based on research on the latest vulnerabilities and attacks.
- Make it easier for DIB stakeholders to **respond** to attacks, **choose** and **implement** security methodologies.

What Success Looks Like

Give industry a powerful hardware security framework

A Successful Outcome

- **Borrow from DoD Capability Packages:** hardware developed for classified use already adhere to security-focused, prescriptive design goals managed by the DoD
- **DIB classified communications hardware needs the same**
- A validated, centralized framework for hardware cybersecurity methodologies
- Clear value in reducing the time to research and implement ambiguous cybersecurity methodologies
- Reference cases for proven success and long-term security and safety
- Tools that align cybersecurity methods with specific system architectures.

The Intended Benefits

- **Accelerates Adoption of Best Practices:** Simplifies navigation of fragmented hardware security guidance across the DIB.
- **Promotes Consistency and Alignment:** Establishes a shared framework for defense contractors and agencies..
- **Leverages Real-World Evidence:** Bases recommendations on validated, research-backed case studies.
- **Supports Clearer, Faster Decisions:** Links security measures to specific systems, risks, and use cases.
- **Strengthens National Cyber-Physical Resilience:** Closes critical gaps in the hardware layer of defense infrastructure.

Research Methodology

Provide value to
DIB with a
powerful security
framework

Hypotheses

- CPs improve detection and mitigation of hardware threats.
- CPs reduce large-scale hardware-related disruptions.
- CPs enable proactive hardware security.
- CPs standardize incident reporting.
- CPs are adaptable from DoD/NIST to industry.

Research Methods

- Literature Review
- Framework Gap Analysis
- Case Study Analysis
- Expert Interviews

Fig 2: Secure communications terminal operators. Credit: L3Harris (l3harris.com)

Preliminary Findings

How the CP will work and how the DIB could benefit from its use

Results:

- Many DIB organizations have different approaches, especially when no framework exists.
- Companies make up their own solutions, may or may not be best for the scenario. **Example:** Maersk rebuilt their entire network, then implemented honeypot methods.
- Categorization of methodologies for best results:
 - Preventative:** Preventative design and hardening techniques.
 - Reactive:** Incident response and mitigation strategies.
 - Honey Pot:** Controlled environments for monitoring attackers during the attack.
- There may be strategic benefits in allowing an attack to run its course while monitoring it in real time.

How the CP Works:

- Validation of methodologies through case studies, expert reviews, and alignment with existing policy.
- Framework for selection based on criteria correlating it to effectiveness against attack, each firm.
- Updated with the latest research findings turned into prescriptive methodologies, refreshed periodically by a public or private owner.
- No ambiguity on ownership and updating.

Conclusions & Next Steps

Future work to
build off what
we've learned

Conclusions:

- **The effectiveness criteria** for choosing solutions needs to be improved for deeper correlation to desired outcomes, types of firms, business structures, risk profiles, etc.
- Additional defense categories, more applicable to certain types of attack, need to be considered in order to fit a wide array of attack types

What's Next:

- Refine the approach to validating methodologies (case studies, expert review, policy alignment)
- **Ownership, management, and upkeep discussions:** who is best suited for keeping the record up to date?
- Applications within other industries in DIB beyond classified communication hardware, other critical infrastructure
- Weaknesses in the CP solution and alternatives, fixes for those weaknesses

Thank you! Q&A

Irem Gultekin Chiappone, Ph.D. Candidate

iremg@gwmail.gwu.edu