
© 2025 Carnegie Mellon University 1
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Value of Using Large
Language Models in
Building Software for
Systems

Mark Sherman

Software Engineering Institute

Carnegie Mellon University

International Council on Systems Engineering
A better world through a systems approach

INCOSE International Symposium 2025 | Ottawa, Canada
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

© 2025 Carnegie Mellon University 2
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Copyright 2025 Carnegie Mellon University.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute nor of
Carnegie Mellon University - Software Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work product was created in part using generative AI.

CERT® and Carnegie Mellon® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM25-0966

© 2025 Carnegie Mellon University 3
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

© 2025 Carnegie Mellon University

I N C O S E J U L Y 3 0 , 2 0 2 5

David Schulker

Mark Sherman

Value of Using Large Language Models
in Building Software for Systems

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

© 2025 Carnegie Mellon University 4
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Robert Schiela

Deputy Technical Director

David Svoboda

Software Security Engineer

Jamie Glenn

Operations Coordinator

I want to thank the following members of the Cybersecurity Foundations group at CERT for their expert assistance with

evaluating and preparing these materials:

• JRobert Schiela SME Technical Review

• David Svoboda SME (Representative, ISO/IEC JTC1/SC22/WG14 (C Programming Language) and
lead of Undefined Behaviors Study Group (UBSG))

• David Schulker Data Scientist and co-Lead

• Genavieve Chick Data Science Intern

• Vedha Avali Data Science Intern

• Jamie Glenn Experiment management

Acknowledgments

Vedha Avali

Intern

David Schulker

Senior Data Scientist

Genavieve Chick

Intern

© 2025 Carnegie Mellon University 5
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocomplete is familiar to everyone

© 2025 Carnegie Mellon University 6
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocomplete scaled on steroids

Photo credit: AI-generated photo by @_ greta. https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532

https://stock.adobe.com/contributor/210574097/%40--greta?load_type=author&prev_url=detail
https://stock.adobe.com/contributor/210574097/%40--greta?load_type=author&prev_url=detail
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532

© 2025 Carnegie Mellon University 7
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocomplete now!

ChatGPT 4o:“Please write a sonnet in the

style of Shakespeare about my love of

spicy food.”

© 2025 Carnegie Mellon University 8
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocomplete now!

A Sonnet to Spice

O fiery muse that dost my tongue enflame,

With heat that dances, fierce yet sweetly bold,

No dull repast could ever taste the same,

Once kissed by flames of crimson, bright and gold.

The chili’s burn doth wake my slumb’ring soul,

Like passion’s touch that lingers on my lips,

Its embered fire I willingly extol,

Though scorching pain may bring me to eclipse.

Yet from this blaze I turn not, nor retreat,

For in the heat, my heart doth find delight.

Each molten bite, a battle won in heat,

A war of taste where pleasure meets the fight.

So let the peppers blaze and bring me bliss,

For love is fire, and spice, a burning kiss.

ChatGPT 4o:“Please write a sonnet in the

style of Shakespeare about my love of

spicy food.”

© 2025 Carnegie Mellon University 9
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocompletion is Established Technology
for IDEs Years Ago

Mark Sherman, Using AI to Build More Secure Software, Abstractions II Conference, August 23, 2019,
https://insights.sei.cmu.edu/documents/4246/2019_017_001_553383.pdf

© 2025 Carnegie Mellon University 10
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocompletion is Established Technology
for IDEs Years Ago

Mark Sherman, Using AI to Build More Secure Software, Abstractions II Conference, August 23, 2019,
https://insights.sei.cmu.edu/documents/4246/2019_017_001_553383.pdf

Note: “GPT”

© 2025 Carnegie Mellon University 11
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocomplete now!

ChatGPT 4:“Write a Pascal

program that will convert a

Julian calendar date to a

Hebrew (lunar) calendar

date.”

program JulianToHebrew;

uses SysUtils, Math;

type

TDate = record

Year, Month, Day: Integer;

end;

var

JulianDate, HebrewDate: TDate;

function JulianToHebrewDate(Julian: TDate): TDate;

var

HebrewYear, HebrewMonth, HebrewDay: Integer;

begin

// This is where the actual conversion algorithm should

be implemented.

// Placeholder values are assigned for demonstration.

HebrewYear := (Julian.Year - 3760); // Simplified

example, adjust accordingly

HebrewMonth := 1; // Placeholder

HebrewDay := 1; // Placeholder

Result.Year := HebrewYear;

Result.Month := HebrewMonth;

Result.Day := HebrewDay;

end;

procedure ReadDate(var Date: TDate);

begin

Write('Enter year: ');

ReadLn(Date.Year);

Write('Enter month: ');

ReadLn(Date.Month);

Write('Enter day: ');

ReadLn(Date.Day);

end;

procedure PrintDate(Date: TDate);

begin

WriteLn('Year: ', Date.Year, ' Month: ', Date.Month, '

Day: ', Date.Day);

end;

begin

WriteLn('Enter the Julian date:');

ReadDate(JulianDate);

HebrewDate := JulianToHebrewDate(JulianDate);

WriteLn('Converted Hebrew date:');

PrintDate(HebrewDate);

end.

© 2025 Carnegie Mellon University 12
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

“Silicon Valley” is Enthusiastic

https://www.youtube.com/watch?v=Xgsxi7IGMEU
https://www.salesforceben.com/salesforce-will-hire-no-more-software-engineers-in-
2025-says-marc-benioff/

https://www.businessinsider.com/mark-zuckerberg-meta-
ai-replace-engineers-coders-joe-rogan-podcast-2025-1

"We have increased the productivity this year … AI
… by more than 30%. … we will have less support
engineers next year."

© 2025 Carnegie Mellon University 13
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Telling the Tale to Wall Street

We need 70% less coders from third parties to code as the

AI handles most of the coding, the human only needs to look

at the final 30% to validate it.

Murray Auchincloss, CEO & Director

BP Oil

Earnings Call, May 7, 2024

https://seekingalpha.com/article/4690194-bp-p-l-c-bp-q1-2024-earnings-call-transcript

Today, more than a quarter of all new code at Google is

generated by AI, then reviewed and accepted by

engineers.

Sundar Pichai, CEO Alphabet and Google

Earnings call, Oct 29, 2024
https://abc.xyz/assets/1f/d2/b4b2a1c4437395dce09645f71173/2024-q3-earnings-transcript.pdf

© 2025 Carnegie Mellon University 14
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Academic Research More Nuanced

Researchers from Johannes Gutenberg

University and University College London … gave

40 pieces of buggy code to [ChatGPT]. …

ChatGPT solved 19 problems.
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-
fixing-bugs-in-code
https://dl.acm.org/doi/10.1145/3135932.3135941
https://arxiv.org/abs/2301.08653

AI coding tools continue to consistently

generate insecure code.
“AI Code, Security and Trust: Organization Must Change Their
Approach,” 2023 Snyk AI-Generated Code Security Report,
https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html

Participants who had access to an AI

assistant wrote significantly less secure

code.
Do Users Write More Insecure Code with AI Assistants
Perrry, Srivastava, Kmar, Boneh, CCS ‘23, Nov 26-20, 2023,
https://arxiv.org/pdf/2211.03622

Copilot [produced] 1,689 programs. Of

these, we found approximately 40% to

be vulnerable.
Pearce, Ahmad, Tan, Dolan-Gavin, Larri, Asleep at the Keyboard?

Assessing the Security of GitHubb CoPilot’s Code

Contributions, IEEE Symposium on Security and Privacy, 2022,

https://arxiv.org/pdf/2108.09293

We introduce an evaluation framework consisting of

2,294 software engineering problems … The best-

performing model … is able to solve a mere 1.96%

of the issues.
Jimenez, Yang, Wettig, Yao, Pei, Press, and Narasimhan, “SWE-BENCH: CAN LANGUAGE
MODELS RESOLVE REAL-WORLD GITHUB ISSUES?”, Nov 11, 2024,
https://arxiv.org/pdf/2310.06770

https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://arxiv.org/pdf/2211.03622
https://arxiv.org/pdf/2108.09293
https://arxiv.org/pdf/2310.06770

© 2025 Carnegie Mellon University 15
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Can Large Language Models be Used in Building
Software for Systems? – Our Experiment
Ask ChatGPT to identify the presence or absence of errors in 1223 examples of

compliant and noncompliant code from SEI CERT C, C++ and Java Secure Coding

Standards

• ChatGPT 3.5 as of March 27, 2023, and Jun-Aug 2024

• ChatGPT 4 and GitHub CoPilot as of February 16, 2024

• ChatGPT 4o as of Jun-Aug 2024

• 2684 runs, each trial run as a new conversation

• No trial systematically repeated

• All examples (with solutions) available on the web during ChatGPT’s training

• Some examples have comments suggesting error

• ChatGPT’s performance evaluated by SMEs

Mark Sherman, “Using ChatGPT to Analyze Your Code? Not So Fast,” February 12, 2024, https://insights.sei.cmu.edu/blog/using-chatgpt-to-analyze-your-code-not-so-fast/
David Schulker, “GenAI for Code Review of C++ and Java,” November 18, 2024 https://insights.sei.cmu.edu/blog/genai-for-code-review-of-c-and-java/

© 2025 Carnegie Mellon University 16
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

CERT Secure Coding Standards

Collected wisdom from thousands of contributors on community

wiki since Spring 2006

http://securecoding.cert.org

• SEI CERT C Coding Standard

• SEI CERT C++ Coding Standard

• CERT Oracle Secure Coding Standard for Java

Secure Coding Training and Professional Certificates

• CERT Secure Coding in C and C++

• CERT Secure Coding in Java

International Standards Participation

• ISO/IEC C Programming Language

• ISO/IEC C++ Programming Language

http://securecoding.cert.org/

© 2025 Carnegie Mellon University 17
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Example Standard Page (FIO47-C:Use valid format strings)

© 2025 Carnegie Mellon University 18
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

(type %s): %d\n

(type %d): %s\n

Example Standard Page (FIO47-C:Use valid format strings)

© 2025 Carnegie Mellon University 19
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Finding and fixing an error (FIO47-C:Use valid format strings)

ChatGPT 3.5

Example of noncompliant code:

#include <stdio.h>

void func(void) {

const char *error_msg = "Resource not available to
user.";

int error_type = 3;

/* ... */

printf("Error (type %s): %d\n", error_type, error_msg);

/* ... */

}

ChatGPT 3.5:

The format specifier in the printf
statement is incorrect.

ChatGPT 4.0:
The correct `printf` statement should be as follows:

printf("Error (type %d): %s\n",
error_type, error_msg);

CoPilot:
Here is the corrected code:

printf("Error (type %d): %s\n",
error_type, error_msg);

© 2025 Carnegie Mellon University 20
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

All Versions Missing Errors

DCL38-C Use the correct syntax when declaring a flexible array member

ChatGPT3.5: There is nothing technically wrong with this code

ChatGPT4: the provided code snippet is an appropriate use of a flexible array member within a

struct for dynamic array allocation in C.

CoPilot: The code seems to be correct in terms of syntax and logic.

© 2025 Carnegie Mellon University 21
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Improved Technology Sometimes Gives Better Results

ChatGPT3.5: The code appears to be incomplete as it doesn't have any obvious errors.

ChatGPT4: There are a couple of issues with the provided code … **Uninitialized Variable:**

CoPilot: The issue with this code is that the sign variable in the is_negative function is not initialized.

EXP33-C Do not read uninitialized memory

© 2025 Carnegie Mellon University 22
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Compliant recommendation – correct code

Evaluating Correction Can be Difficult
EXP42-C Standard

0 == memcmp(left->buffer, right->buffer, 13)

© 2025 Carnegie Mellon University 23
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

ChatGPT 3.5’s Subtly Mistaken Fix

The code appears to be comparing two instances of a struct s using memcmp().

However, this may not always produce the expected results, especially if the struct contains padding bytes between its

members. The padding bytes may have different values in the two instances of the struct, which would cause memcmp() to

return a non-zero value even if the actual data members are the same.

To avoid this issue, it is recommended to compare the struct members individually, instead of using memcmp(). For

example, the code could be modified as follows:

void compare(const struct s *left, const struct s *right) {

if ((left && right) &&

(left->c == right->c) &&

(left->i == right->i) &&

(0 == strcmp(left->buffer, right->buffer))) {

/* ... */

}

}

Here, the struct members are compared individually using == for char and int members and strcmp() for the buffer member.

• Assumed “buffer” is a string
• (If string, should be using strncmp, not strcmp)

0 == strcmp(left->buffer, right->buffer)

© 2025 Carnegie Mellon University 24
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Trying a serious security violation – Enabling Command
Injection
(ENV33-C. Do not call system())

system(cmdbuf)

© 2025 Carnegie Mellon University 25
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Identifies a non-existent problem and misses real problem
(ENV33-C. Do not call system())

ChatPGT3.5:
it's recommended to use a function that is specifically designed to handle
string concatenation and avoid buffer overflows, such as snprintf().

system(cmdbuf)
snprintf(…

© 2025 Carnegie Mellon University 26
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Revisiting ENV33 – Better

ChatGPT4:

**Security Vulnerability
(Command Injection):** The most
critical issue with this code is that
it directly incorporates user input
(`input`) into a command string
that is executed by the system.

© 2025 Carnegie Mellon University 27
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Revisiting ENV33 – Better – and surprising guardrails

ChatGPT4:

**Security Vulnerability
(Command Injection):** The most
critical issue with this code is that
it directly incorporates user input
(`input`) into a command string
that is executed by the system.

CoPilot:

Sorry, the response was filtered by

the Responsible AI Service. Please

rephrase your prompt and try

again. Learn more.

(Tried 3 times.)

© 2025 Carnegie Mellon University 28
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Consolidated Results

*Combining reports as “noticed but not error” as a “error found”
** Parenthetical values exclude “noticed but not error” reports
*** Not combining “noticed” and “found”

Insecure Programs* Secure Programs

Correct** Incorrect % Correct*** Incorrect %

C

ChatGPT 3.5 114 (110) 124 48% 97 112 46%

ChatGPT 4 187 (175) 51 79%

ChatGPT 4o 175 34 84%

CoPilot 172(160) 66 72%

C++
ChatGPT 3.5 104 61 63%

ChatGPT 4o 138 27 84%

Java
ChatGPT 3.5 108 166 39% 204 135 60%

ChatGPT 4o 183 91 67% 268 71 79%

© 2025 Carnegie Mellon University 29
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Improved performance

30%

40%

50%

60%

70%

80%

90%

3.5 4

Improvement from 3.5 to 4 (4, CoPilot, 4o)

Insecure C Secure C Insecure C++ Insecure Java Secure Java

C
o

rr
ec

t
in

te
rp

re
ta

ti
o

n

© 2025 Carnegie Mellon University 30
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Field Experience – Consultant and Developer

“If you’re not a great coder, you’re not going to be able to

have the judgement to know if the code that comes out

is going to do what you want in the way you want.
Bret Greenstein, Data and AI Leader, PwC,

Can AI coding Tools meet enterprise expectations, (quoted by Lindsey Wilkinson, Feb 26. 2024,

https://www.ciodive.com/news/generative-ai-coding-tools-reality-versus-hype/708426/

“When LLMs make mistakes — and they do, regularly —

it takes an experienced developer to spot these issues,

understand their implications, and know how

to fix them.”
Rahul Agarwal, Machine Learning Engineer, Facebook, LLMs Won’t “Why Replace

Programmers: A Reality Check,“ Nov 25, 2024, https://mlwhiz.medium.com/why-llms-wont-

replace-programmers-a-reality-check-73133bd3b9cc

Photo credit: AI-generated photo by Tomislav.
https://stock.adobe.com/images/old-fictional-wizard-
using-a-laptop-computer/583224250

https://stock.adobe.com/contributor/210310017/tomislav?load_type=author&prev_url=detail
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250

© 2025 Carnegie Mellon University 31
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Users Defer to Perceived AI Authority

Photo generated by Firefly in response to “Mystical wizard with the appearance of a
futuristic computer.” April 2024 release. Adobe. June 2024.
https://www.adobe.com/products/firefly/features/text-to-image.html

“Participants with access to an AI assistant were also

more likely to believe they wrote secure code,

suggesting that such tools may lead users to be

overconfident about security flaws in their code.”
Do Users Write More Insecure Code with AI Assistants

Perrry, Srivastava, Kmar, Boneh, CCS ‘23, Nov 26-20, 2023, https://arxiv.org/pdf/2211.03622

“Respondents commonly found security issues with AI

suggestions but they also strongly believed that AI

suggestions were secure.”
“AI Code, Security and Trust: Organization Must Change Their Approach,” 2023 Snyk AI-Generated Code Security Report,

https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html

https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://arxiv.org/pdf/2211.03622

© 2025 Carnegie Mellon University 32
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Amazon’s Experience

Amazon Experience using LLMs

for Software Development

Task: Upgrade existing Java 8 and

Java 11 programs to Java 17

Claim: saved the equivalent of

4,500 developer-years

Approach

• Train an LLM specifically on Java

8/11 to Java 17 upgrade

• Process programs written according

to Amazon standards

• Leverage OpenRewrite recipes for

describing the changes

• Reuse existing unit tests for existing

programs to validate successful

conversion

Jassy, A., Sept 2024, https://www.linkedin.com/posts/andy-jassy-8b1615_one-of-the-most-
tedious-but-critical-tasks-activity-7232374162185461760-AdSz/

© 2025 Carnegie Mellon University 33
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Drive LLM to Validate Itself

• Use other tools to generate candidate issues

• Use prompt engineering to focus on candidate issues

• Use LLM to generate patches

• Use LLM to generate evidence of patch correctness

• Validate patch correctness externally, e.g., SMT solvers (aka theorem prover)

Existing
Static-Analysis

Tool(s)
Source Code

Alerts Adjudicated true positives, with trace

LLM-Based
Tool

Adjudicated false positives, with proof sketch

Adjudicated uncertain

Figure 1. Using LLMs for SA Alert Adjudications. Klieber, Flynn, “Using LLMs for SA alert adjudication and rationales”, CrossTalk, 2024

Klieber and Flynn, “Using LLMs to Adjudicate Static-Analysis Alerts,” 58th Hawaii International Conference on System Sciences (HICSS), January 10, 2025,

“https://scholarspace.manoa.hawaii.edu/items/42b220fa-17f8-4cfe-9f2b-ba4553e21bc3

© 2025 Carnegie Mellon University 34
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Take Aways

• Don’t abandon existing methods for improving software security

- Secure coding practices and source code analysis tools remain valuable

• Educate management (and developers) on practical applications of LLMs

- Separate hype from capability

• Adopt low hanging fruit, e.g., autocompletion, documentation surfing,
contained code “snippets”

- Easy productivity gains from basic function

- Correctness and security manifest

• If situation allows, consider investing in specialty applications

- Extremely well-defined context and target

- Have or acquire technical talent to construct LLM applications

- Practical method for evaluation of LLM output

© 2025 Carnegie Mellon University 35
[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Thank You

Mark Sherman

Carnegie Mellon University

Software Engineering Institute

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

412-268-5800, 888-201-4479

info@sei.cmu.edu

