< = International Council on Systems Engineering
I wg QE E A better world through a systems approach
N il
*'Q..!/

Value of Using Large
Language Models in
Building Software for

Systems

Mark Sherman
Software Engineering Institute /\
Carnegie Mellon University (\%
g

ot/

rll||||,v|yr|.

A Yo P E TR 00 e vty

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Copyright 2025 Carnegie Mellon University.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute nor of
Carnegie Mellon University - Software Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work product was created in part using generative Al.

CERT® and Carnegie Mellon® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM25-0966

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

SONE Sor, Carnegie

& T Mellon

Q ?

. Z _ - University

E— Software

% & : ‘
P20 py, $5 Engineering

INstitute

Value of Using Large Language Models
in Building Software for Systems

INCOSE JULY 30, 2025

David Schulker
Mark Sherman

© 2025 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution

Acknowledgments

Robert Schiela David Svoboda David Schulker Jamie Glenn Genavieve Chick Vedha Avali
Deputy Technical Director Software Security Engineer Senior Data Scientist Operations Coordinator Intern Intern

| want to thank the following members of the Cybersecurity Foundations group at CERT for their expert assistance with
evaluating and preparing these materials:

* JRobert Schiela SME Technical Review

» David Svoboda SME (Representative, ISO/IEC JTC1/SC22/WG14 (C Programming Language) and
lead of Undefined Behaviors Study Group (UBSG))

» David Schulker Data Scientist and co-Lead

* Genavieve Chick Data Science Intern

» Vedha Avali Data Science Intern

+ Jamie Glenn Experiment management

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Autocomplete is familiar to everyone

=TT

|

Please check

your

out

the

© 2025 Carnegie Mellon University

New Message Cancel
): Ma
+ Please check| D)
your out the A .
g w e r t y u i o p
a s d f g h j k |
&$ z x ¢ v b nm @&
123 @ space return
® ¢

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocomplete scaled on steroids

New Message Cancel

To: Mark Sherman

+ Please check|

© 2025 Carnegie Mellon University

Photo credit: Al-generated photo by @ greta. htips://stock.adobe.com/images/aerial-view-of-a-data-center/962228532

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

https://stock.adobe.com/contributor/210574097/%40--greta?load_type=author&prev_url=detail
https://stock.adobe.com/contributor/210574097/%40--greta?load_type=author&prev_url=detail
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532
https://stock.adobe.com/images/aerial-view-of-a-data-center/962228532

Autocomplete now!

ChatGPT 40:“Please write a sonnet in the
style of Shakespeare about my love of
spicy food.”

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Autocomplete now!

ChatGPT 40:“Please write a sonnet in the
style of Shakespeare about my love of
spicy food.”

© 2025 Carnegie Mellon University

A Sonnet to Spice

O fiery muse that dost my tongue enflame,

With heat that dances, fierce yet sweetly bold,

No dull repast could ever taste the same,

Once kissed by flames of crimson, bright and gold.

The chili's burn doth wake my slumb’ring soul,
Like passion’s touch that lingers on my lips,

Its embered fire | willingly extol,

Though scorching pain may bring me to eclipse.

Yet from this blaze | turn not, nor retreat,

For in the heat, my heart doth find delight.
Each molten bite, a battle won in heat,

A war of taste where pleasure meets the fight.

So let the peppers blaze and bring me bliss,
For love is fire, and spice, a burning kiss.

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Autocompletion is Established Technology
for IDEs Years Ago

Using Al For Autocompletion

o Safe, correct code could be written
incrementally

def main(direct
line_count

filename o1 directory): o USlng n'g rams

» ext (filename)

_ * Using deep learning (Generative
Ling_cowntfext] 4= 1 : Pretrained Transformer 2)

line_count [ext

line_count[ext] +=

line_count[ext] .append(

line

Sources:

E. Schutte, Autocomplete from StackOverflow, 2016,
https://emilschutte.com/stackoverflow-autocomplete/

© 2019 TabNine, See https://tabnine.com/eula

(Jacob Jackson) TabNine, “Autocompletion with deep learning,” July 18, 2019,
https://tabnine.com/blog/deep

L. Tung, “New tool promises to turbo-charge coding in major programming
languages,” July 25, 2019, https://www.zdnet.com/article/new-tool-promises-to-
turbo-charge-coding-in-major-programming-languages/

Carnegie Mellon University
re |

Using Al to Build More Secure Software [DISTRIBUTION STATEMENT A] Approved far public release and unlimited distibution.

13

Mark Sherman, Using Al to Build More Secure Software, Abstractions Il Conference, August 23, 2019,
https://insights.sei.cmu.edu/documents/4246/2019_017_001_553383.pdf

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Autocompletion is Established Technology
for IDEs Years Ago

Using Al For Autocompletion

o Safe, correct code could be written
incrementally

def main(direct
line_count

filename o1 directory): o USlng n'g rams

» ext (filename)

i * Using deep learning (Generative ")
Vine_count(ext] 1= 1 : Pretrained Transformer 2) < Note: “GPT

line_count [ext
line_count[ext] +=
line_count [ext] .append(
line

Sources:
E. Schutte, Autocomplete from StackOverflow, 2016,
https://emilschutte.com/stackoverflow-autocomplete/

© 2019 TabNine, See https://tabnine.com/eula

(Jacob Jackson) TabNine, “Autocompletion with deep learning,” July 18, 2019,
https://tabnine.com/blog/deep

L. Tung, “New tool promises to turbo-charge coding in major programming
languages,” July 25, 2019, https://www.zdnet.com/article/new-tool-promises-to-
turbo-charge-coding-in-major-programming-languages/

Carnegie Mellon University
re |

Using Al to Build More Secure Software [DISTRIBUTION STATEMENT A] Approved far public release and unlimited distibution.

13

Mark Sherman, Using Al to Build More Secure Software, Abstractions Il Conference, August 23, 2019,
https://insights.sei.cmu.edu/documents/4246/2019_017_001_553383.pdf

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Autocomplete now!

ChatGPT 4:“Write a Pascal
program that will convert a
Julian calendar date to a
Hebrew (lunar) calendar
date.”

© 2025 Carnegie Mellon University

program JulianToHebrew;
uses SysUtils, Math;

type
TDate = record
Year, Month, Day: Integer;
end;

var
JulianDate, HebrewDate: TDate;

function JulianToHebrewDate(Julian: TDate): TDate;
var

HebrewYear, HebrewMonth, HebrewDay: Integer;
begin

/l This is where the actual conversion algorithm should
be implemented.

/I Placeholder values are assigned for demonstration.

HebrewYear := (Julian.Year - 3760); // Simplified
example, adjust accordingly

HebrewMonth := 1; // Placeholder

HebrewDay := 1; // Placeholder

Result.Year := HebrewYear;

Result.Month := HebrewMonth;

Result.Day := HebrewDay;
end;

procedure ReadDate(var Date: TDate);
begin
Write('Enter year: ");
ReadLn(Date.Year);
Write('Enter month: ');
ReadLn(Date.Month);
Write('Enter day: ');
ReadLn(Date.Day);
end;

procedure PrintDate(Date: TDate);
begin
WriteLn('Year: ', Date.Year, ' Month: ', Date.Month, '
Day: ', Date.Day);
end;

begin
WriteLn('Enter the Julian date:");
ReadDate(JulianDate);

HebrewDate := JulianToHebrewDate(JulianDate);
WriteLn('Converted Hebrew date:');

PrintDate(HebrewDate);
end.

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

“Silicon Valley” is Enthusiastic

TECH

Mark Zuckerberg says Al could
soon do the work of Meta's midlevel
engineers

Lakshmi Varanasi Jan11,2025,1:28 PMET * Share R Save

year for 2025 right now énd we're- not
adding any more software Engineers

»-

PP 23aramaswirsaes > 8= T3 o3

Marc Benioff, Salesforce Founder: Why Salesforce Isn't Hiring Software

Meta CEO Mark Zuckerberg says the work of midlevel sof(ware englneers

can soon be outsourced to Al. ERENDAN SMIALOWSKI/ Getty Images Em]ineel's | E1236

" H N H
s, ihek zicaeior sl Mata il stare atienitingte We have increased the productivity this year ... Al
work of midlevel software engineers this year. by more thaﬂ 30% we V\/||| ha\/e |eSS SUppOl’t
e Met ntually out Il coding on it t :
Al.e amay eventually outsource all coding on its apps to eﬂgl neers ﬂeXt >/ear.ll
https://www.businessinsider.com/mark-zuckerberg-meta- https://www.youtube.com/watch?v=Xgsxi7IGMEU
ai-replace-engineers-coders-joe-rogan-podcast-2025-1 https://www.salesforceben.com/salesforce-will-hire-no-more-software-engineers-in-

2025-says-marc-benioff/

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Telling the Tale to Wall Street

We need 70% less coders from third parties to code as the
Al handles most of the coding, the human only needs to look
at the final 30% to validate it.

i

_——
il

Murray Auchincloss, CEO & Director
BP QOil
Earnings Call, May 7, 2024

https://seekingalpha.com/article/4690194-bp-p-I-c-bp-q1-2024-earnings-call-transcript

4
z
L R
¥ 5
Z ¢
i
{
") i]
v
KT W

Today, more than a quarter of all new code at Google is
generated by Al, then reviewed and accepted by
engineers.

Sundar Pichai, CEO Alphabet and Google
Earnings call, Oct 29, 2024

https://abc.xyz/assets/1f/d2/b4b2alc4437395dce09645f71173/2024-g3-earnings-transcript.pdf

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Academic Research More Nuanced

Participants who had access to an Al
assistant wrote significantly less secure
code.

Do Users Write More Insecure Code with Al Assistants
Perrry, Srivastava, Kmar, Boneh, CCS ‘23, Nov 26-20, 2023,
https://arxiv.org/pdf/2211.03622

Copilot [produced] 1,689 programs. Of
these, we found approximately 40% to
be vulnerable.

Pearce, Ahmad, Tan, Dolan-Gavin, Larri, Asleep at the Keyboard?
Assessing the Security of GitHubb CoPilot’s Code

Contributions, IEEE Symposium on Security and Privacy, 2022,
https://arxiv.org/pdf/2108.09293

Researchers from Johannes Gutenberg
University and University College London ... gave
40 pieces of buggy code to [ChatGPT]. ...
ChatGPT solved 19 problems.

https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-
fixing-bugs-in-code

https://dl.acm.org/doi/10.1145/3135932.3135941

https://arxiv.org/abs/2301.08653

Al coding tools continue to consistently
generate insecure code.

“Al Code, Security and Trust: Organization Must Change Their
Approach,” 2023 Snyk Al-Generated Code Security Report,
https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html

We introduce an evaluation framework consisting of
2,294 software engineering problems ... The best-
performing model ... is able to solve a mere 1.96%

of the issues.

Jimenez, Yang, Wettig, Yao, Pei, Press, and Narasimhan, “SWE-BENCH: CAN LANGUAGE
MODELS RESOLVE REAL-WORLD GITHUB ISSUES?”, Nov 11, 2024,
https://arxiv.org/pdf/2310.06770

© 2025 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code
https://arxiv.org/pdf/2211.03622
https://arxiv.org/pdf/2108.09293
https://arxiv.org/pdf/2310.06770

Can Large Language Models be Used in Building
Software for Systems? - Our Experiment

Ask ChatGPT to identify the presence or absence of errors in 1223 examples of
compliant and noncompliant code from SEI CERT C, C++ and Java Secure Coding
Standards

« ChatGPT 3.5 as of March 27, 2023, and Jun-Aug 2024

« ChatGPT 4 and GitHub CoPilot as of February 16, 2024

« ChatGPT 40 as of Jun-Aug 2024

« 2684 runs, each trial run as a new conversation

 No trial systematically repeated

« All examples (with solutions) available on the web during ChatGPT's training

- Some examples have comments suggesting error

« ChatGPT's performance evaluated by SMEs

Mark Sherman, “Using ChatGPT to Analyze Your Code? Not So Fast,” February 12, 2024, https://insights.sei.cmu.edu/blog/using-chatgpt-to-analyze-your-code-not-so-fast/
David Schulker, “GenAl for Code Review of C++ and Java,” November 18, 2024 https://insights.sei.cmu.edu/blog/genai-for-code-review-of-c-and-java/

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

CERT Secure Coding Standards

SEI CERT
C Coding Standard

Rusies for Dovaloping Sate, Raliadile, and Secere Systems

C++ Coding Standard

Fautes for Developing Sate, Ratabla, 3ad
Securs Systams b Cos
Rt

© 2025 Carnegie Mellon University

Collected wisdom from thousands of contributors on community
wiki since Spring 2006

http://securecoding.cert.org

« SEI CERT C Coding Standard

« SEI CERT C++ Coding Standard

» CERT Oracle Secure Coding Standard for Java

Secure Coding Training and Professional Certificates
« CERT Secure Coding in Cand C++
« CERT Secure Coding in Java

International Standards Participation
* ISO/IEC C Programming Language
* ISO/IEC C++ Programming Language

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

http://securecoding.cert.org/

Example Standard Page (FIO47-C:Use valid format strings)

Noncompliant Code Example

Mismatches between arguments and conversion specifications may result in undefined behavier. Compilers may diagnose type mismatches in formatted output function

invocations. In this noncompliant code example, the exror_type argument to printf () is incorrectly matched with the = specifier rather than with the d specifier. Likewise,
the errox msg argument is incorrectly matched with the d specifier instead of the s specifier. These usages result in undefined behavior. One possible result of this invocation is
that printf () will interpret the error_type argument as a pointer and try to read a string from the address that error_type contains, possibly resulting in an access
viclation,

#include <stdio.h>

void func(void) {

const char *error_msg = "Resource not available to user.”;
int error_type = 3;
.';. . KJ".

printf("Error (type %s): %d\n", error_type, error_msg);

/= .0 *

Compliant Solution

This compliant solution ensures that the arguments to the print £() function match their respective conversion specifications:

#include <stdio.h>

void func(void) {

const char *error_msg = "Resource not available to user.”;
int error_type = 3;
.';. . KJ".

printf("Error (type ¥d): %s\n", error_type, error_msg);

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Example Standard Page (FIO47-C:Use valid format strings)

Noncompliant Cod

e Example

Mismatches between arguments and conversion specifications may result in undefined behavier. Compilers may diagnose type mismatches in formatted output function
invocations. In this noncompliant code example, the exror_type argument to printf () is incorrectly matched with the = specifier rather than with the d specifier. Likewise,

the error_msg argument is incorrectly matched with the d specifier instead of the = specifier. These usages result in undefined behavior. One possible result of this invocation is

that printf () will interpret the error_type argument as a pointer and try to read a string from the address that error_type contains, possibly resulting in an access

viclation.

#include <stdio.h

void func(void) {

>

const char *error_msg = "Resource not available to user.”;

int error_type

= 3;

TA Y
printf("Error

type %s): Hdin'

o *

Compliant Solution

This compliant solution en:

#include <stdio.h

void func(void) {
const char *err
int error_type
TA Y

A A

suredthat thy arguments to the print£ () function match their respective conversion specifications:

>

rror_type, error_msg);

or_meg = "fesource not available to user.”y

=3

3
\ 4 \ 4

printf("Error

type %d): %s\n'

o *

© 2025 Carnegie Mellon

University

ror_type, error_msg);

type %s

%d\n

¥ ¥
type %d): %s\n

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Finding and fixing an error (rio47-c:use valid format strings)
ChatGPT 3.5

Example of noncompliant code: ChatGPT 3.5:
The format specifier in the printf

#include <stdio.h> statement is incorrect.
void func(void) { ChatGPT 4.0:

const char *error_msg = "Resource not available to The correct “printf™ statement should be as follows:
user."; printf("Error (type %d): %s\n",

int error_type = 3; error_t_ype, error_msg);

[*.*/

printf("Error (type %s): %d\n", error_type, error_msg); CoPilot:
LY. Here is the corrected code:

printf("Error (type %d): %s\n",
i error_type, error_msg);

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

All Versions Missing Errors

DCL38-C Use the correct syntax when declaring a flexible array member

ChatGPT3.5: There is nothing technically wrong with this code

ChatGPT4: the provided code snippet is an appropriate use of a flexible array member within a
struct for dynamic array allocation in C.

CoPilot: The code seems to be correct in terms of syntax and logic.

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

20

Improved Technology Sometimes Gives Better Results

EXP33-C Do not read uninitialized memory

ChatGPT3.5: The code appears to be incomplete as it doesn't have any obvious errors.

ChatGPT4: There are a couple of issues with the provided code ... **Uninitialized Variable:**

CoPilot: The issue with this code is that the sign variable in the is_negative function is not initialized.

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

21

Evaluating Correction Can be Difficult
EXP42-C Standard

Compliant recommendation - correct code

0 == memcmp(left->buffer, right->buffer, 13)]

car .o

int i;
char buffer[13];
¥

void compare(const struct s *left, const struct s *right) {
if ((left && right) &&
({left-»c == right-»c) &&

Llotft 2 ad bt 2 DD
=]

(8 == memcmp{left-»buffer, right->buffer, 13)f) {

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

ChatGPT 3.5's Subtly Mistaken Fix

The code appears to be comparing two instances of a struct s using mememp().

However, this may not always produce the expected results, especially if the struct contains padding bytes between its
members. The padding bytes may have different values in the two instances of the struct, which would cause mememp() to

| 0 == strcmp(left->buffer, right->buffer)]

Ulticu ads> TUITUVVS.

To avoid this issue, it is reco
example, the code could be

void compare(con ruct s *left, const struct s *right) {

if ((left && Light) &&
== right->c) &&
e |;y:|t I) i

== strcmp(left->buffer, right->buffer)))
*/

©

Here, the struct members\are compared individually using == for char and int members and stremp() for the buffer member.

* Assumed “buffer” is a string
* (If string, should be using strncmp, not strcmp)

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Trying a serious security violation — Enabling Command
Injection

(ENV33-C. Do not call system())

In this noncompliant code example, the system () function is used to exacute any cmd in the host environment.

#include <string.h>
#include <stdlib.h>

#include <stdio.h>

enum { BUFFERSIZE = 512 };

system(cmdbuf)

void func{const char *input} {
char cmdbuf[BUFFERSIZE];
int len_wanted = snprintf(cmdbuf, BUFFERSIZE,
"any_cmd "%s°", input);
if (len_wanted »= BUFFERSIZE) {
/* Handle error */
} else if (len_wanted < 8) {
I HAN il

} else iff (system(cmdbuf)
/* Hand Ye=—mrror

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

ldentifies a non-existent problem and misses real problem

(ENV33-C. Do not call system())

In this nencompliant code example, the system () function is used to execute any_cmd in the host environment.

#include <string.h>

ey snprintf(... |

enum { BUFFERSIZE = 512 };
void func(const char *input
char cmdbuf[BUFFj
int len_wanted % snprintf(cmdfuf, BUFFERSIZE,
cmd s, input);

if (len_wanted »= BUFFERSIZE) {
/* Handle error */

1} else if (len_wanted < 8) {
I HaN] itk

} else ifj(system{cmdbuf)
f* Hand [=Jae ey

system(cmdbuf)]

ChatPGT3.5:
it's recommended to use a function that is specifically designed to handle
string concatenation and avoid buffer overflows, such as snprintf().

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Revisiting ENV33 - Better

ChatGPT4:

**Security Vulnerability
(Command Injection):** The most
critical issue with this code is that
it directly incorporates user input
("input) into a command string
that is executed by the system.

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Revisiting ENV33 - Better - and surprising guardrails

ChatGPT4:

**Security Vulnerability
(Command Injection):** The most
critical issue with this code is that
it directly incorporates user input
("input) into a command string
that is executed by the system.

CoPilot:

Sorry, the response was filtered by
the Responsible Al Service. Please
rephrase your prompt and try
again. Learn more.

(Tried 3 times.)

© 2025 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Consolidated Results

Insecure Programs* Secure Programs
Correct** | Incorrect % Correct*** | Incorrect %

ChatGPT 3.5 114 (110) 124 48% 97 112 46%
ChatGPT 4 187 (175) 51 79%

c ChatGPT 40 175 34 84%
CoPilot 172(160) 66 72%
ChatGPT 3.5 104 61 63%

C++

ChatGPT 40 138 27 84%

ChatGPT 3.5 108 166 39% 204 135 60%

Java ChatGPT 4o 183 91 67% 268 71 79%

*Combining reports as “noticed but not error” as a “error found”
** Parenthetical values exclude “noticed but not error” reports

*** Not combining “noticed” and “found”

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Improved performance

Improvement from 3.5 to 4 (4, CoPilot, 40)
90%

30%

70%

60%

50% _—
40%

30%

Correct interpretation

3.5 4

—Insecure C Secure C =—Insecure C++ —I|nsecure Java —Secure Java

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Field Experience - Consultant and Developer

Photo credit: Al-generated photo by Tomislav.
https://stock.adobe.com/images/old-fictional-wizard-

using-a-laptop-computer/583224250

© 2025 Carnegie Mellon University

“If you're not a great coder, you're not going to be able to
have the judgement to know if the code that comes out
is going to do what you want in the way you want.

Bret Greenstein, Data and Al Leader, PwC,

Can Al coding Tools meet enterprise expectations, (quoted by Lindsey Wilkinson, Feb 26. 2024,
https://www.ciodive.com/news/generative-ai-coding-tools-reality-versus-hype/708426/

“When LLMs make mistakes — and they do, regularly —
it takes an experienced developer to spot these issues,
understand their implications, and know how

to fix them.”

Rahul Agarwal, Machine Learning Engineer, Facebook, LLMs Won’t “Why Replace
Programmers: A Reality Check,” Nov 25, 2024, https://mlwhiz.medium.com/why-lims-wont-
replace-programmers-a-reality-check-73133bd3b9cc

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

https://stock.adobe.com/contributor/210310017/tomislav?load_type=author&prev_url=detail
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250
https://stock.adobe.com/images/old-fictional-wizard-using-a-laptop-computer/583224250

Users Defer to Perceived Al Authority

“Participants with access to an Al assistant were also
more likely to believe they wrote secure code,
suggesting that such tools may lead users to be
overconfident about security flaws in their code.”

Do Users Write More Insecure Code with Al Assistants
Perrry, Srivastava, Kmar, Boneh, CCS 23, Nov 26-20, 2023, https://arxiv.org/pdf/2211.03622

“Respondents commonly found security issues with Al
suggestions but they also strongly believed that Al
suggestions were secure.”

“Al Code, Security and Trust: Organization Must Change Their Approach,” 2023 Snyk Al-Generated Code Security Report,
https://go.snyk.io/2023-ai-code-security-report-dwn-typ.html

Photo generated by Firefly in response to “Mystical wizard with the appearance of a
futuristic computer.” April 2024 release. Adobe. June 2024.
https://www.adobe.com/products/firefly/features/text-to-image.html

© 2025 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://arxiv.org/pdf/2211.03622

Amazon's Experience

Amazon Experience using LLMs
for Software Development

Task: Upgrade existing Java 8 and
Java 11 programs to Java 17

Claim: saved the equivalent of
4,500 developer-years

Approach

 Train an LLM specifically on Java
8/11 to Java 17 upgrade

* Process programs written according
to Amazon standards

 Leverage OpenRewrite recipes for
describing the changes

» Reuse existing unit tests for existing
programs to validate successful
conversion

lassy, A., Sept 2024, https://www.linkedin.com/posts/andy-jassy-8b1615_one-of-the-most- i N
. s o [DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University tedious-but-critical-tasks-activity-7232374162185461760-AdSz/

release and unlimited distribution.

Drive LLM to Validate Itself

Existing Alerts Adjudicated true positives, with trace
Static-Analysis >
Source Code / T \ LLM-Based | Adjudicated false positives, with proof sketch

el Tool
v Adjudicated uncertain -

Use other tools to generate candidate issues

Use prompt engineering to focus on candidate issues

Use LLM to generate patches

Use LLM to generate evidence of patch correctness

» Validate patch correctness externally, e.g., SMT solvers (aka theorem prover)

Figure 1. Using LLMs for SA Alert Adjudications. Klieber, Flynn, “Using LLMs for SA alert adjudication and rationales”, CrossTalk, 2024

Klieber and Flynn, “Using LLMs to Adjudicate Static-Analysis Alerts,” 58th Hawaii International Conference on System Sciences (HICSS), January 10, 2025,
“https://scholarspace.manoa.hawaii.edu/items/42b220fa-17f8-4cfe-9f2b-bad553e21bc3

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Take Aways

« Don't abandon existing methods for improving software security
- Secure coding practices and source code analysis tools remain valuable
« Educate management (and developers) on practical applications of LLMs
- Separate hype from capability
« Adopt low hanging fruit, e.g., autocompletion, documentation surfing,
contained code “snippets”
- Easy productivity gains from basic function
- Correctness and security manifest
- If situation allows, consider investing in specialty applications
- Extremely well-defined context and target
- Have or acquire technical talent to construct LLM applications
- Practical method for evaluation of LLM output

[DISTRIBUTION STATEMENT A] Approved for public
© 2025 Carnegie Mellon University release and unlimited distribution.

Thank You

Mark Sherman

Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213-2612
412-268-5800, 888-201-4479
info@sei.cmu.edu

[DISTRIBUTION STATEMENT A] Approved for public

© 2025 Carnegie Mellon University release and unlimited distribution.

