International Council on Systems Engineering
A better world through a systems approach

Case Studies for
Querying the Model
- SysML V2

Sean Densford
Osvaldas Jankauskas

INCOSE International Symposium 2025 | Ottawa, Canada i&

7?

.

I@E

Hell

Sean Densford

Industry Process Consultant

Sean Densford is a MBSE with a decade of experience working in the aerospace
and defense industry. He holds a Master’s Degree in Systems Engineering from
Johns Hopkins University and is an OMG-Certified Systems Modeling
Language™ (SysML®) Professional (OCSMP) and a Certified Systems
Engineering Professional (CSEP). He currently works as an Industry Process
Expert for MBSE helping all industries using systems engineering to better utilize

engineering tools to develop their systems architectures.

Osvaldas Jankauskas

Senior System Analyst Lead

Osvaldas Jankauskas is Senior System Analyst Lead at Dassault Systems. He holds a BS in Applied
Physics from Kaunas University of Technology and is an OMG-Certified Systems Modeling Language ™
(SysML®) Professional (OCSMP). He has been working as an Analyst for over 10 years developing tool
features and is the original author of Case Studies for Querying the Model for CATIA Magic in SysML V1.

.

I@E

Today’s

Agenda

Introduce Case Studies for Querying the Model in V1
A LB LB A A A A

Overview of SysML V2
A LB A AW A A A

V2 Candidate Case Studies
A A A A A A Ay

Future Work
A A A A A A Ay

INCOSE

Introduce Case Studies for
Querying the Model in V1

'''''''''

I@E
History

Case Studies for Querying the Model

https://docs.nomagic.com/display/MD2024x/Case+Studies+for+Querying+the+Model

incose.org | 5

https://docs.nomagic.com/display/MD2024x/Case+Studies+for+Querying+the+Model

I@E

Examples

Case Studies for Querying the Model

* Case 1. Coloring Ports by Type using Contains operation

* Case 2. Finding Element Usages as Types

* Case 3. Requirements from the Owning Package of a Smart Package

* Case 4. Properties that Satisfy System Requirements

* (Case 5. Validating Elements Not Used in Diagram

* (Case 6. Requirements Without Text

* (Case 7. Sum of Default Values of Recursively Collected Properties
Redefined by Specific Property

* Case 8. Showing Parameter Direction and Type in Single Table Cell using
StringConcat

* Case 9. Requirements Derivation and Satisfaction using Table Hierarchy

Case 10. Filtering Diagrams by Modification Date

Case 11. Server Project Version in Diagram

Case 12. Activity Decomposition Table

Case 13. Coloring Associations between Block and Use Case

Case 14. Incoming Association of Class

Case 15. Requirements Coverage by Design Elements

Case 16. Using the Opposite Reference to find element usages as Tag
Values

incose.org | 6

https://docs.nomagic.com/display/MD2024x/Case+1.+Coloring+Ports+by+Type+using+Contains+operation
https://docs.nomagic.com/display/MD2024x/Case+1.+Coloring+Ports+by+Type+using+Contains+operation
https://docs.nomagic.com/display/MD2024x/Case+2.+Finding+Element+Usages+as+Types
https://docs.nomagic.com/display/MD2024x/Case+2.+Finding+Element+Usages+as+Types
https://docs.nomagic.com/display/MD2024x/Case+3.+Requirements+from+the+Owning+Package+of+a+Smart+Package
https://docs.nomagic.com/display/MD2024x/Case+3.+Requirements+from+the+Owning+Package+of+a+Smart+Package
https://docs.nomagic.com/display/MD2024x/Case+4.+Properties+that+Satisfy+System+Requirements
https://docs.nomagic.com/display/MD2024x/Case+4.+Properties+that+Satisfy+System+Requirements
https://docs.nomagic.com/display/MD2024x/Case+5.+Validating+Elements+Not+Used+in+Diagram
https://docs.nomagic.com/display/MD2024x/Case+5.+Validating+Elements+Not+Used+in+Diagram
https://docs.nomagic.com/display/MD2024x/Case+6.+Requirements+Without+Text
https://docs.nomagic.com/display/MD2024x/Case+6.+Requirements+Without+Text
https://docs.nomagic.com/display/MD2024x/Case+7.+Sum+of+Default+Values+of+Recursively+Collected+Properties+Redefined+by+Specific+Property
https://docs.nomagic.com/display/MD2024x/Case+7.+Sum+of+Default+Values+of+Recursively+Collected+Properties+Redefined+by+Specific+Property
https://docs.nomagic.com/display/MD2024x/Case+7.+Sum+of+Default+Values+of+Recursively+Collected+Properties+Redefined+by+Specific+Property
https://docs.nomagic.com/display/MD2024x/Case+8.+Showing+Parameter+Direction+and+Type+in+Single+Table+Cell+using+StringConcat
https://docs.nomagic.com/display/MD2024x/Case+8.+Showing+Parameter+Direction+and+Type+in+Single+Table+Cell+using+StringConcat
https://docs.nomagic.com/display/MD2024x/Case+8.+Showing+Parameter+Direction+and+Type+in+Single+Table+Cell+using+StringConcat
https://docs.nomagic.com/display/MD2024x/Case+9.+Requirements+Derivation+and+Satisfaction+using+Table+Hierarchy
https://docs.nomagic.com/display/MD2024x/Case+9.+Requirements+Derivation+and+Satisfaction+using+Table+Hierarchy
https://docs.nomagic.com/display/MD2024x/Case+10.+Filtering+Diagrams+by+Modification+Date
https://docs.nomagic.com/display/MD2024x/Case+10.+Filtering+Diagrams+by+Modification+Date
https://docs.nomagic.com/display/MD2024x/Case+11.+Server+Project+Version+in+Diagram
https://docs.nomagic.com/display/MD2024x/Case+11.+Server+Project+Version+in+Diagram
https://docs.nomagic.com/display/MD2024x/Case+12.+Activity+Decomposition+Table
https://docs.nomagic.com/display/MD2024x/Case+12.+Activity+Decomposition+Table
https://docs.nomagic.com/display/MD2024x/Case+13.+Coloring+Associations+between+Block+and+Use+Case
https://docs.nomagic.com/display/MD2024x/Case+13.+Coloring+Associations+between+Block+and+Use+Case
https://docs.nomagic.com/display/MD2024x/Case+14.+Incoming+Association+of+Class
https://docs.nomagic.com/display/MD2024x/Case+14.+Incoming+Association+of+Class
https://docs.nomagic.com/display/MD2024x/Case+15.+Requirements+Coverage+by+Design+Elements
https://docs.nomagic.com/display/MD2024x/Case+15.+Requirements+Coverage+by+Design+Elements
https://docs.nomagic.com/display/MD2024x/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values
https://docs.nomagic.com/display/MD2024x/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values
https://docs.nomagic.com/display/MD2024x/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values

Examples

Case Studies for Querying the Model

Case 2. Finding Element Usages as Types

Mame: used as type of part property Type: [Type - | Single Value
~Expression
() Expression . L .
#4 Metachain Navigation Metachain Navigation @ Edit Use as... Remove
Create operation...
Operation Name: Metachain Navigation
Metaclass or Stereotype Property Insert

= Elock [Class]

_typedElementOfType

incose.org | 7

https://docs.nomagic.com/display/MD2024x/Case+2.+Finding+Element+Usages+as+Types
https://docs.nomagic.com/display/MD2024x/Case+2.+Finding+Element+Usages+as+Types

Examples (cont)

Case Studies for
Querying the Model

* Case 16. Using the
Opposite Reference
to find element
usages as Tag Values

Edit Expression

Name: |Usages as Tagged Values

Expression

)] Expression

& &
o8 Simple Naovigation

& & Find

B- E;SHJ Implied Relation
i [#] Create operation...

Type: Element v [Single Value
Metachain Navigation) Edit Use as.. Remove

Operation Name: Metachain Navigation

| Metaclass or Stereotype Property Insert
] Element _elementTaggedValue Remove
ElementTaggedValue Tagged Value Owner
Results Filter by Type: |<none>
4] Ordered Unique
oK Cancel Help Evaluation Mode

incose.org | 8

https://docs.nomagic.com/display/MD2024xR2/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values
https://docs.nomagic.com/display/MD2024xR2/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values
https://docs.nomagic.com/display/MD2024xR2/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values
https://docs.nomagic.com/display/MD2024xR2/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values
https://docs.nomagic.com/display/MD2024xR2/Case+16.+Using+the+Opposite+Reference+to+find+element+usages+as+Tag+Values

INCOSE

Query Capabilities of SysML V2

e Evaluation

Textual Notation in SysML V2

SysML Libraries:
« ScalarQuantityValue Operations
» Basic Math: Addition, Subtraction, Multiplication, Division, and

Exponents
» Basic Functions: Abs, Max, Min, Sqgrt, Floor, Sum, and Product
 Basic Logic: ==, |=, <, > and <=

* VectorQuantityValue Operations

« Same as above with more

* Inner, Outer, Norm, Angle, Transform
* TensorQuantityValue Operations

Textual Notation in SysML V2

KerML Libraries:
* Function Library
 Base Functions
« ==I= === ToString, all, istype, hastype, meta
 Math Functions
 Trig, Natural, Integer, Rational, Real
« Sequence Functions
« Equals, Size, Includes, Excludes, Intersection
» Collection Functions
« Same as above + Contains
« Control Functions
» Collect, Implies, Select, Reduce

incose.org | 11

verification ProductionQuality {
private import VerificationCases::*;
private import NumericalFunctions::*;
private import SequenceFunctions::*;
private import RealFunctions::*;
subject Hinges [*] : HingeDef::Hinge = (1..numberOfRuns)->ControlFunctions::collect {
generateHinge()

Import Capability Built in Functions

}s
doc /* Verifies if large scale of production parts can be assembled at required rate */
attribute numberOfRuns : Integer = Scripts::input("Number of assemblies to analyze");
attribute negatives : Real [*] = filterNegatives(Hinges);
attribute outOfSpec :
attribute mean : Real - . .
attribute variance : Built in Math Expression Capability S&E3E

in x : Real;

(x - mean) ~ 2
}) / numberOfRuns;
attribute deviation : Real = sqrt(variance);
attribute exportCSV = Scripts::exportCSV(Hinges);
objective obj {

verify ProductionRequirement {

subject; Custom Function
in :>> actualPercentage = outOfSpec; Ca"S

}
}

return verdict : VerdictKind = PassIf(obj());

incose.org | 12

INCOSE

V2 Candidate Case Studies

* Getting Started
* Number of Requirements
* % of Satisfied Requirements

* % of Performed Actions

I@E

Metric Methods

de Calculations .
private import Sca.
calc def Area { . . -

in length : Real

in width : Real;

return : Real;

length * widtk

Opaque Actions

incose.org | 14

Opaque Action

Action Def/Usage using another language than sysml

ActionDefinition :> Behavior, OccurrenceDefinition

cmeta‘class» «metaciata def»
Behavior :> Class OccurrenceDefinition :> Definition, Class
FAY
«metadata def»

More Suitable to Represent Behaviors

incose.org | 15

Calculation Definition - Functions

Calculation
Definitions are
Functions and
Actions

Function — a
behavior that
returns one result
parameter

T

P

W

«metaclass»
Behavior ;> Class

«metadata def»
OccurrenceDefinition > Definition, Class

«metaclass»

Function :> Behavior

ActionDefinition :> Behavior, OccurrenceDefinition

«metadata def»

|

J

CalculationDefinition :» Function, ActionDefinition

«metadata def»

Could Represent Math or Behavior TN

eds: e
Model-Level Evaluable Expressions

* Model-Level Evaluable Expressions are expressions that refer to
metadata

* Metadata is data about model elements; it is not about what is being
modeled

Metric Infrastructure

Separate Namespaces
Model: SimpleVehicleModel

Metric Attributes:
SimpleVehicleMetricAttributes

Metrics Applied to Simple Vehicle
Model: SimpleVehicleMetrics

Metric Functions Defined:
MetricFunctions

e

W

: Simple ¥ehicle Model with Metrics
- B-H8 [SimplevehicleModel..]

Bt HS [SimpleYehicleMetricAttributes)
. - H3 [MetricFunctions]

- B [9 [SimpleVehicleMetrics]

B- [Used Projects

Sim pleVehicleModel

SimpleYehicleM etricAttributes Simple¥YehicleMetrics

incose.org | 18

eds: e
Simple Vehicle Model

* From the Specification Annex A: Example Model

* Provides illustration of how SysML can be used to model a sample
system with both Textual and Graphical notation

* Provided by OMG

INCOSE

package SimpleVehicleMetricAttributes {
part SimpleVehicleModelMetrics {

attribute countOfRequirements : ScalarValues::Integer =
MetricFunctions::Satisfy::RequirementsCount(SimpleVehicleModel.metadata);

attribute countOfSatisfyRequirements : ScalarValues::Integer =
MetricFunctions::Satisfy::0wnedSatisfyRequirementsCount(SimpleVehicleModel.metadata);

attribute allOwnedRequirementsRecursive : ScalarValues::Integer =
MetricFunctions::Satisfy::OwnedRequirementsAll(SimpleVehicleModel.metadata);

attribute allOwnedSatisfyRequirementsRecursive : ScalarValues::Integer =
MetricFunctions: :Satisfy: :OwnedSatisfyRequirementsAll(SimpleVehicleModel.metadata);

attribute satisfiedRequirements : ScalarValues::Integer =
MetricFunctions: :Satisfy::notSatisfiedRequirements(SimpleVehicleModel.metadata);

attribute satisfiedRequirementsPercent : ScalarValues::Integer =
MetricFunctions::Satisfy::satisfiedRequirementsPercentage(SimpleVehicleModel.metadata);

}

Metrics Applied to Simple Vehicle Model: SimpleVehicleMetrics

* Create a custom table view: Metric Table
* Expose the System of Interest

* Define the columns and rows

IaE

Metric Functions Defined: MetricFunctions

Imports:

private
private
private

private

private

import SequenceFunctions::*;
import ScalarValues::*;
import SequenceFunctions::*;
import ScalarValues::*;

import ControlFunctions::*;

.d--'_-\-\"'

e W
calc def RequirementsCount {
in scope : KerML::Kernel::Package [1];
size(OwnedRequirementsAll(scope))

}
Sat|Sfy Functions: calc def OwnedRequirementsAll {
in scope : KerML::Kernel::Package [1];
RequirementsCount ownedMembers = scope.ownedMember.? {
OwnedRequirementsAll in X, . . .
(x as SysML::Element).owningRelationship
OwnedSatisfyRequirementsAll hastype OwningMembership |
OwnedSatisfyRequirementsCount ﬁx as SysML..Element).ownlngRelatlonshlp
astype FeatureMembership
satisfiedRequirementsPercentage }s
requirements = ownedMembers.? {
in x;
X hastype SysML::RequirementUsage
}s
nested = ownedMembers.? {
in x;
X @SysML: :Namespace & not (@SysML::VerificationCaseUsage)
}s

numIndirect = nested->collect OwnedRequirementsAll;
union(numIndirect, requirements)

.

calc def ActionsCount {
. in scope : KerML::Kernel::Package [1];
Perform FU nCtlonS: size(Perform: :ActionsAll(scope))
, }
ActionsCount calc def ActionsAll {
ActionsAll ﬂﬂ,,,,,f——’“”’”ﬂdﬂdﬂﬂﬂ' in scope : KerML::Kernel::Package [1];

ownedMembers = scope.ownedMember;

OwnedPerformedActionsRequirementsAll directActions = ownedMembers.? {
. in x;
PerformActionsCount ’ .
x hastype SysML::Systems::ActionUsage &
onlyActionsBeingPerformed x hastype SysML::VerificationCaseUsage == false
: }s5
performedActionskencentage nestedNamespaces = ownedMembers.? {
in x;
x istype SysML::Namespace & x hastype
SysML: :VerificationCaseUsage == false
35
indirectActions =

nestedNamespaces->ControlFunctions::collect ActionsAll;
SequenceFunctions: :union(indirectActions, directActions)

IéE %

Number of Requirements
 oSMU@ModelBvaaton |

@ R

»>» SimpleYehicleModelMetrics.countOfRequirements = RequirementsCountiSimpleYehicleMaodel metadata)
13

Confirmed with Manual Search of Textual Notation

INCOSE G

% of Satisfied Requirements
I ————

@ R

== Simple¥YehicleModelMetrics satisfiedRequirementsPercent = satisfiedRequirementsPercentage{SimpleVehicleMaodel metadata)
15.3846

&

* Find total requirements

* Find not satisfied requirements

% of Performed Actions

L ovsL@MedeBeuaion |

I —————
@ &R

> > SimpleYehicleModelMetrics.performedictionsPercent = performedactionsPercentage(SimpleYehicleModel.metadata;
100.0

* Find total actions
* Find performed actions

Confirmed with Manually by Checking Each ActionUsage

INCOSE

Future Work

* Recreating Other Queries Based on Customer Feedback
¢ Extending to Other Metrics
* Building Validation Suites

INCOSE

Backup

Operator Mapping

Table 5. Operator Mapping

Operator Library Function Description Model-Level Evaluable?
all BaseFunctions::'all"' Type extent No
All argument values are
istype |BaseFunctions::'istype' directly or indirectly instances Yes
of a type
. All argument values are
hast; B F t ::'hast ! . .
stype EBaseFunctions astype directly instances of a type Yes
Any argument value is
c BaseFunctions:: '@’ directly or indirectly an Yes
instance of a type
Any argument value is
BaseFunctions:: directly or indirectly an
instance of a metaclass

INCOSE
h o

Classification expressions. The classification operators are syntactically similar to binary operators, but,
instead of an expression as their second operand, they take a type name. The classification operators
istype and hastype test whether all of the values of their first operand is classified by the named type
(either including or not including subtypes. respectively). The @ operator is similar to istype. but tests
whether at least one of the values of its first operand is classified by the named type. Note that this means
that istype and hastype evaluate to frue on a null (empty list) value, while & evaluates to false.

sensors istype ThermalSensor // Are all sensors ThermalSensors?
sensors @ ThermalSensor // Is any sensor a ThermalSensor?
person hastype Administrator

The classification operator a=s. known as the cast operaror, performs an i=Type test of whether each of
the values of its first operand is classified by the named type, and then it selects only those values that pass
the test to include in its result. The result values of such a cast expression (if any) are always guaranteed to
be instances of the named type.

sensors as ThermalSensor
person as Administrator

The classification operators may also be used without a first operand, in which case the first operand is
implicitly Anything: :self (see 9.2.2.2.1). This is useful, in particular, when used as a test within an
element filter condition expression (see 7.4.14).

istype ThermalSensor
@ThermalSensor
hastype Administrator
as Supervisor

INCOSE

Metaclassification expressions. The metaclassification operators @@ and meta take the qualified name of

any kind of element as their first operand and a metaclass (see 7.4.13) as their second operand. They are
shorthands for classification expressions with the operators @ and as, respectively, and a metadata access

expression (see 7.4.9.4) as their first operand. As such, @€ tests whether any metadata associated with an
element are classified by the given metaclass, while meta filters the metadata associated with an element

and evaluates to those that are classified by the given metaclass.

// Shorthand for designModel .metadata @ ApprovalBAnnotation
designModel @@ ApprovalZnnotation

// Shorthand for sensors.metadata as EerML::Feature
sensors meta KerML: :Feature

// Evaluates to the string "sensors".
(zensors meta KerML::Fsature) .nams

{

Wy

/

F\ 35th Annual INCOSE
N international symposium

hybrid event

Ottawa, Canada
26 - 31 July 2025

ooooooooo

