

2024
Annual **INCOSE**
international workshop
HYBRID EVENT
Torrance, CA, USA
January 27 - 30, 2024

SE in Early Stage R&D (ESRD) Working Group – Status and Collaboration Opportunity

Ann Hodges, Dr. Michael DiMario – co-chairs

Outline

- Why collaborate/participate with SE in ESRD
- Working group background
- Draft framework that bridges research and engineering
- Our ask, your opportunity
- Questions

Why collaborate with the SE in ESRD working group

SE in ESRD issues

- Projects have to reinvent previous research work
 - Experimental/research results not captured adequately
 - “write it down, strive for repeatability”
 - Lack research foundation for technical maturation and development
- Time-to-market is shrinking, competition growing
 - An enriched foundation for technical maturation provides speedup
- New technologies are drivers for new systems/products
- Lack of understanding the value of SE in ESRD – How does it apply to me?
What are the crucial things to do, when to do them, and by whom?
 - Researchers: “Real Genius” movie – *“not my concern how research is applied”*
 - Systems engineers: *Wait for the handoff* from researchers to engage in development

Need to bridge research and engineering development

Working group background

Working group background

Why:

Promote SE value in ESRD resulting in decreased risk of transition to development and productization

Avoid “Valley of Death” and improve research and early development ROI

How:

Focus on Technology Readiness Levels 1-5

Provide ESRD framework with guidelines, processes (“right” + “right-sized”) applicable to gov’t, industry, academia
Papers, articles, briefings, tutorials
Case studies

What:

To provide an open forum for development, application, and usage of SE principles, best practices – provide guidelines and framework(s) to applying SE in ESRD

Who:

Co-chairs - Dr. M. DiMario, A. Hodges
188 members

Working group background – when

WG formation

2020

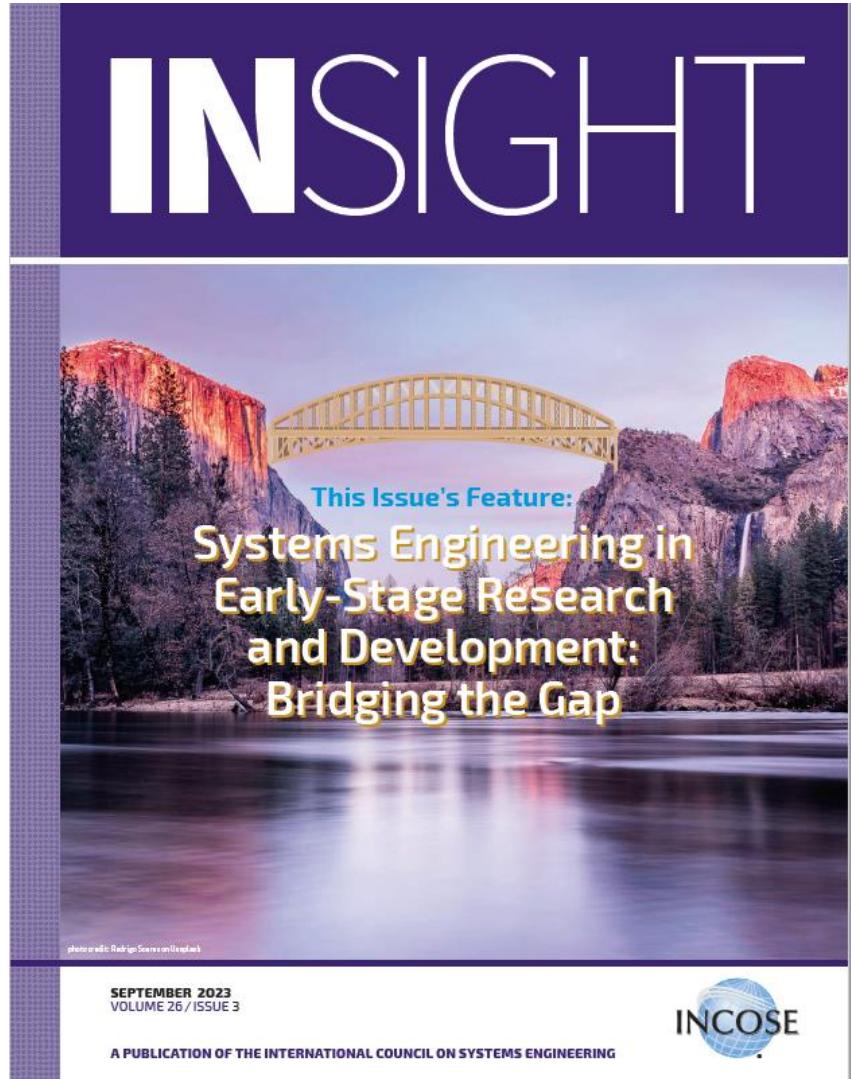
- IW20: Determine WG interest
- 4/20: Officially recognized
- IS20: (Hahn 2020)
- Core team formed

2021

- IW21: WG meetings
- INSIGHT: (DiMario 2021) article
- 5/21: LA Chapter presentation
- IS21: (Hodges 2021)
- General WG meetings

2022

- Evaluate WG input
- Model problems, solutions
- Identify focus areas
- 6/22: LA Chapter presentation


2023

- Draft framework developed
- INSIGHT 9/23 issue, co-chairs are theme editors
- INSIGHT 9/23 papers: (DiMario 2023), (Hodges 2023), (Sly 2023), (Ruth 2023), (Williams 2023), (Granados 2023), (Ritter 2023)
- WSRC 2023 briefing on (Hodges 2023)

2024

- IW24: Seeking collaborative partnerships with other WGs, FuSE integration, CAB case study possibilities
- Case study/studies
- Determine technical work products
- IS24: tutorial submission

Working group background

Aerospace • Agriculture • Automotive • Biotech • Chemical • Communications
Defense • Electronics • Energy • Government • High-Tech • Life Sciences
Medical Devices & Diagnostics • Precision Manufacturing • Scientific Research

INSIGHT
A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING
SEPTEMBER 2023 VOLUME 26 / ISSUE 3

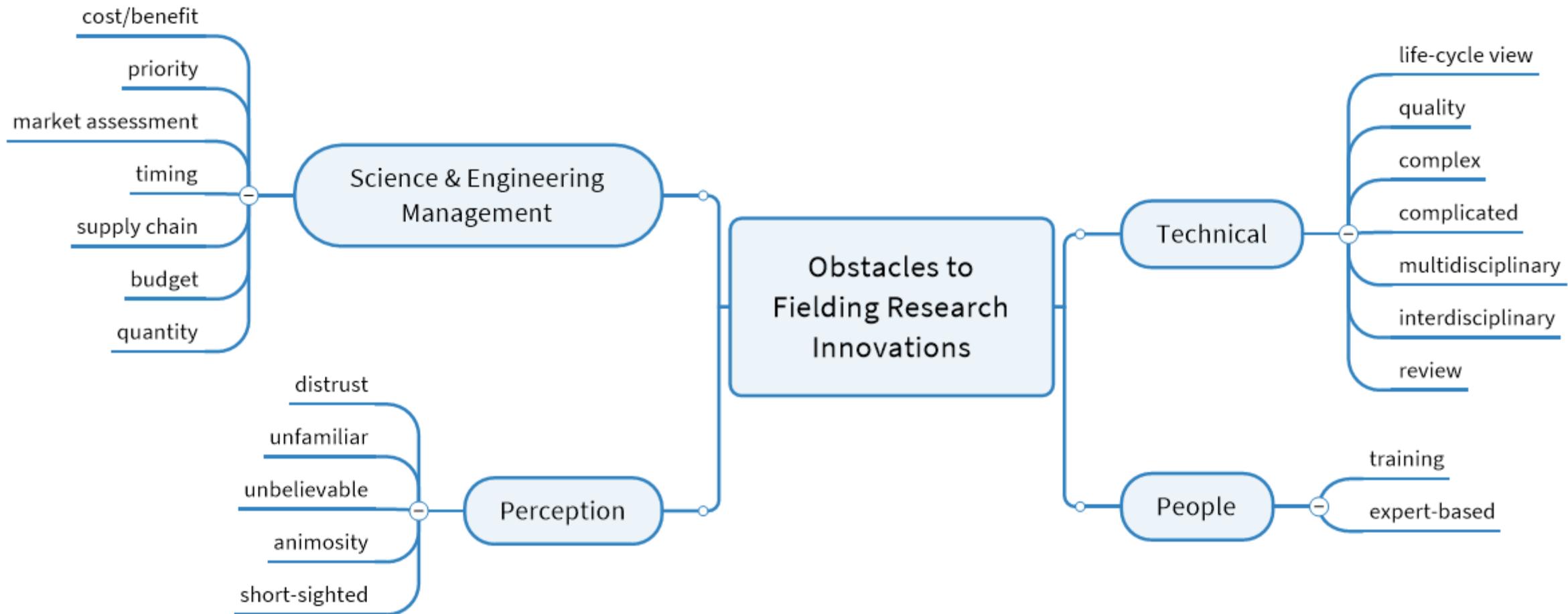
Inside this issue

FROM THE EDITOR-IN-CHIEF	6
SPECIAL FEATURE	8
Systems Engineering Management in Research and Development Valley of Death	8
A Bridge Blueprint to Span the Chasm Between Research and Engineering — A Framework for Systems Engineering in Early-Stage Research and Development	15
Systems Engineering in Technology Development	26
An Approach to Bridging the Gap Between the Attainment of Research Objectives and System Application	33
Enhancing Early Systems R&D Capabilities with Systems — Theoretic Process Analysis	39
Digital Engineering Enablers for Systems Engineering in Early-Stage Research and Development	47
Incorporating Digital Twins In Early Research and Development of Megaprojects To Reduce Cost and Schedule Risk	57

INSIDE THIS ISSUE
SEPTEMBER 2023
VOLUME 26 / ISSUE 3

www.incose.org/IW2024

8



Draft framework that bridges research and engineering

Problem statement

Affinity diagram of barriers in (Anton 2022)

Framework elements

Value Proposition

Principles

Standards Based

**Risk-Informed
Graded
Approach**

MBSE

**TRL Context
Sensitive**

**Research
Domain Types**

Training

**Measures and
Metrics**

Improvement

Framework elements – value proposition

- Right-sized SE provides credible research results that deliver a foundation for future technical maturation
- SE provides value when it delivers an R&D-focused SE strategy that serves as an organizational guide, involves stakeholders within and external to R&D

Express in terms meaningful to both researcher and business communities

Framework elements – risk-informed graded approach

- Application of rigor to practices and deliverables should be informed by the risk of the research
 - Rigor is a function of timing, scope and formality
- Graded approach adapted from (Hodges 2013) to determine relevant rigor includes consideration of intrinsic characteristics of both the research and the project, including:
 - Urgency of research deliverable(s)
 - Research objectives/requirements stability
 - Reliance on maturity level of underlying technology and/or manufacturing
 - Complexity of the technical, organizational, or procurements to support the research
 - Presence and availability of infrastructure (experimental, laboratory, test facilities)
 - Stakeholder expectations
- Generally, research projects' appropriate rigor is low based on risk (consequence of failure \times likelihood of failure); higher consequence of failure (e.g., "grand challenge" or "moon shot" projects) will result in higher rigor recommendation

Framework elements – model-based SE (MBSE)

- Framework is tool agnostic
- Leverage content and formats amenable to later incorporation in MBSE tools – aids the transition to engineering
 - Use content/format researchers are familiar with
 - Don't require researchers to become MBSE tool mavens
- Start the digital thread early
 - Initiates the digital engineering ecosystem to enable go decision (MVP) fast-tracking of product to market with benefits for operating models & revenue stream

Framework elements – TRL context sensitive guidance/roadmap

- (DiMario 2023) describes 2 valleys of death in technology maturation
 - TRL 3-4 – failure to transition from research to a viable technology
 - TRL 5-6 – failure to transition to commercialization
- Framework guidance for SE activities and deliverables focuses on TRLs 1-6
 - Guidance for activities and artifacts
 - Artifacts comprise the initial set of items for the digital thread
 - 12 process areas/activities identified in the roadmap
 - Aligned with ISO/IEC 15288, INCOSE SEBoK, and other process/artifact guidance

Framework elements – TRL context sensitive guidance/roadmap

- Assumptions
 - Guidance is general enough to address all scientific research (e.g., materials science, device physics, quantum computing)
 - There may be TRL-specific requirements for each relevant domain
 - Trans-disciplinary team needed (Principal Investigator (PI), Systems Engineer, Project Manager, Science/Engineering Domain Lead, Sponsor)
 - Use increased rigor for higher-risk research (e.g., grand challenge, “moon shot”)
 - Formality: Examples = more formal plan, CM tool rather than shared drive + naming conventions
 - Increased scrutiny: Examples = more review + evaluation (e.g., external review panel of domain experts)
 - Increased monitoring: Examples = more frequent tracking and oversight (internally + externally)
 - Activities in the roadmap are based on previously mentioned standards, provide basis for bridging terminology into more general SE activities and deliverables
 - Roadmap focuses on planning and oversight of activities, assuming implementation occurs
 - RASIC + TRL 1-6 SE Roadmap is a job aid to provide process/artifact guidance for workshare between research and engineering domains – encourages a multi-disciplinary team

Framework elements – TRL context sensitive guidance/roadmap

Requirements Definition
+ Management

Architecture
Definition

V&V

Project
Planning
• Proposal
• WBS
• Milestones
• Budget

Configuration
Management

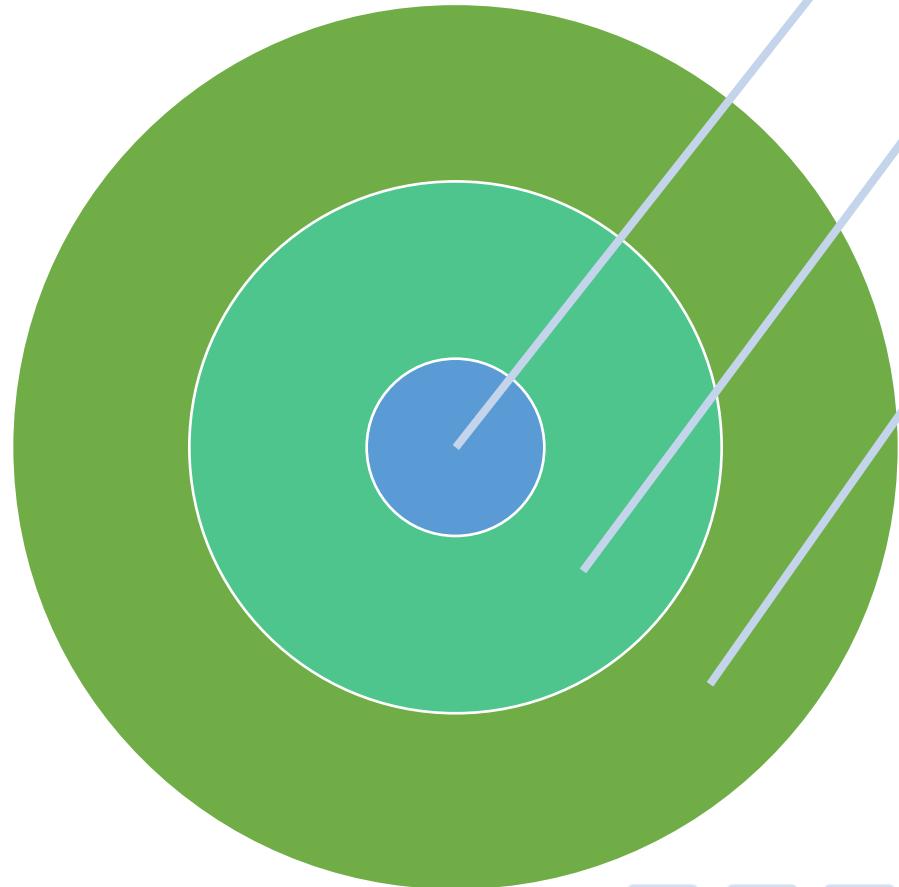
Risk
Management

Issues /
Action Item Tracking

Measuring + Test
Equipment
Management

Project Tracking
+ Oversight

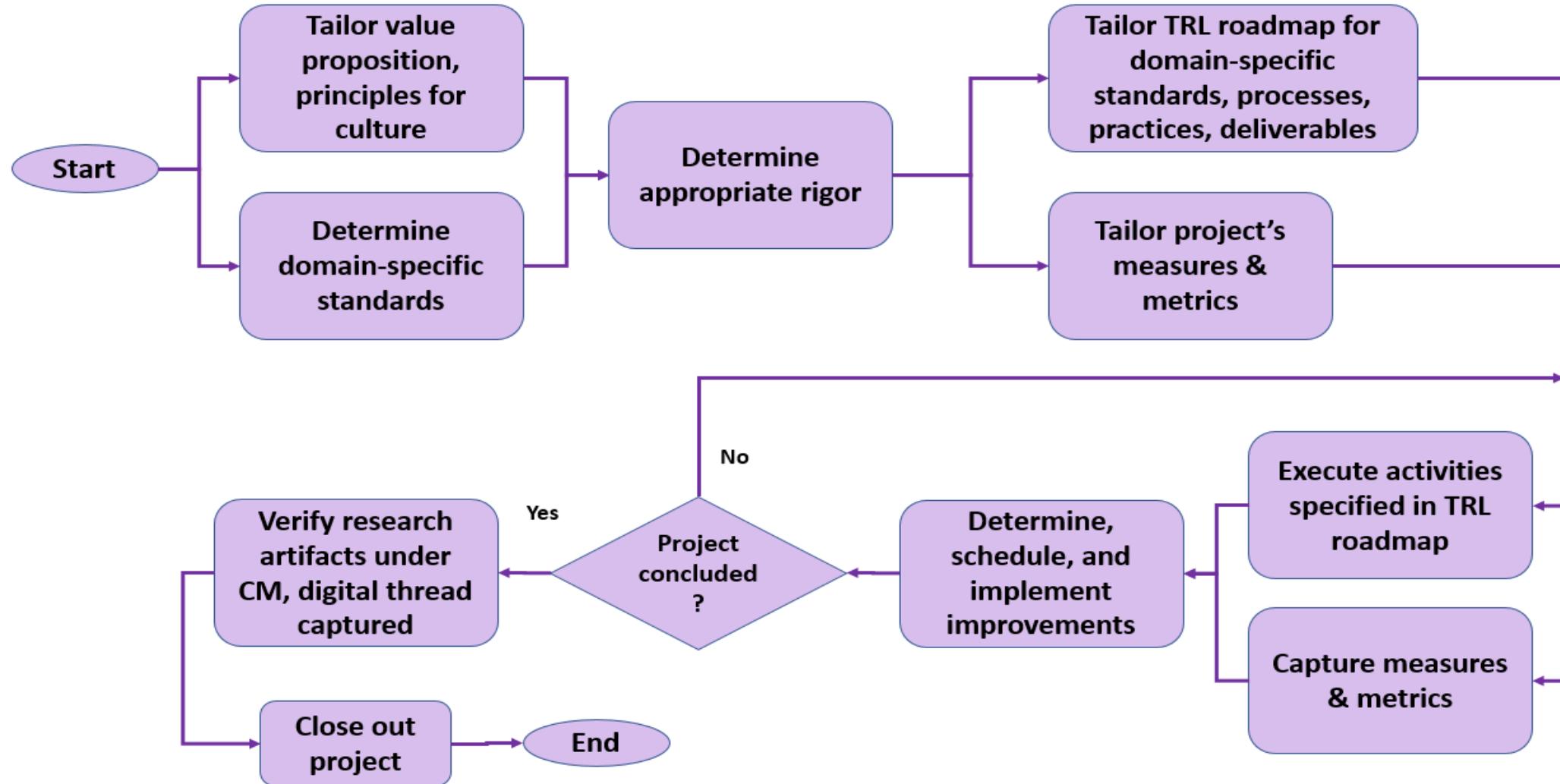
Framework elements – TRL context sensitive guidance/roadmap



Process Area	Principal Investigator	Project Manager	Systems Engineer	Science/Engineering Domain Lead	Sponsor
Requirements Definition and Management	R, A	S	R	S	A
Architecture Definition	A, R	I	S	R, S	I
Verification and Validation (V&V)	A, R	I	S	R, S	S
Project Planning: Proposal/Charter	S	R	S	S	A
Project Planning: Milestone Definition	R	A	R	R	I
Project Planning: WBS Definition	S	R, A	S	C	I
Project Planning: Budget Definition	S	R	S	C	A
Configuration Management	A	C	R	S	I
Risk Management	A	R	R	S	I
Issues/Action Item Tracking	A	R	R	S	I
Measuring and Test Equipment Management	A, R	S	C	R	I
Project Tracking and Oversight	R	A	S	C	I

*RASIC = Responsible, Accountable, Supporting, Informed, Consulted

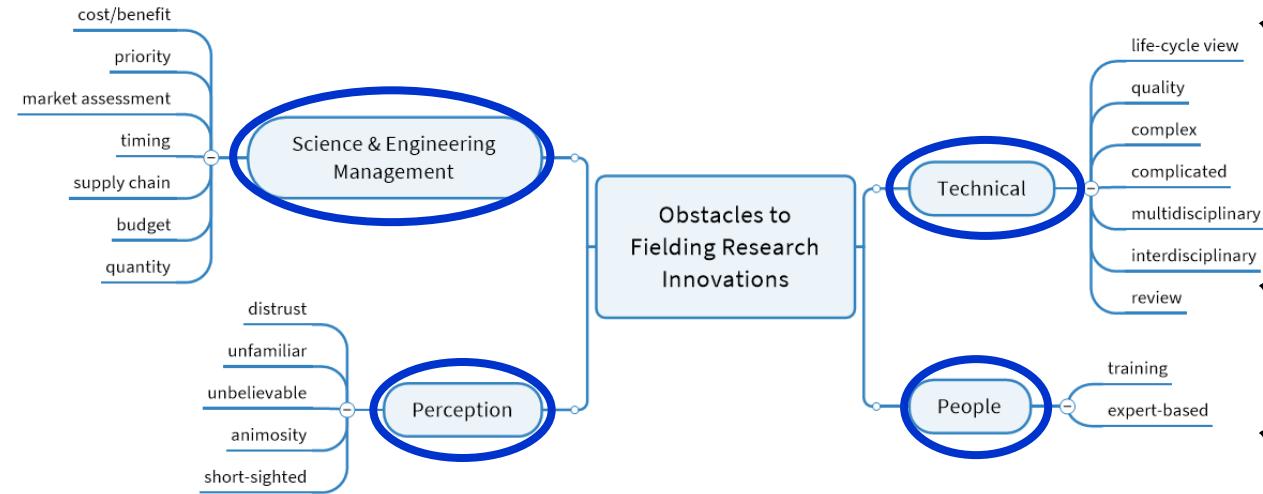
Framework elements – research domain types


Common Core

Tailored Extensions (e.g.,
organizational, methodology)

Domain-specific (design- or
analytical-specific
requirements for each
domain)

Adapted from (Long 2021), slide 23


Summary – using the SE in ESR&D framework elements

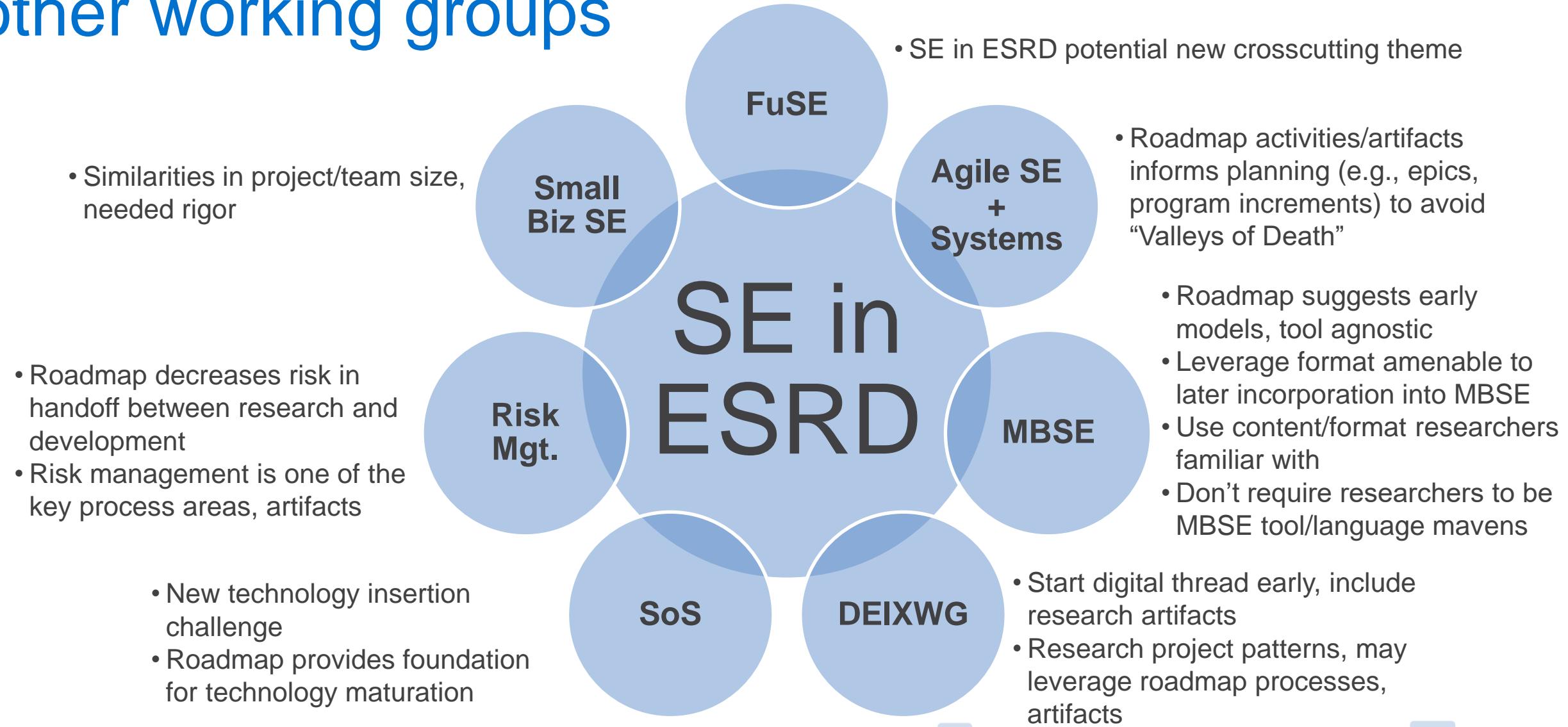
Summary – framework that bridges valley of death between research + engineering

Affinity diagram of barriers in (Anton 2022)

- ✓ Technical – increased awareness of life cycle perspective included in SE activities + deliverables
- ✓ Science & Engineering Management – Budget better informed by the life cycle view, earlier consideration of potential market and supply chain issues
- ✓ People – mutual training/coaching between PI/research team and Systems Engineer
- ✓ Perception – Increased potential for tackling some perception issues due to increased confidence/credibility in relevant standards, research approach, vetting and the ecosystem supporting the research activity

To bridge the valley of death between research and engineering, need to address barriers and questions

Summary – framework that bridges valley of death between research + engineering


- (DiMario 2021) posed questions for a framework that bridges the valley of death between research and engineering
 - ✓ Can the framework address the types of projects of interest? **Yes – domain-specific tailoring, risk-informed graded approach, research domain-type templates**
 - ✓ Does the framework address the cultural gap between SE and early-stage R&D (ESR&D)? **Yes – trans-disciplinary approach**
 - ✓ Does the framework support the range of internal and external stakeholders? **Yes**
 - ✓ Can the framework support different funding levels and funding allocation strategies? **Yes – risk-informed graded approach**
 - ✓ What is an acceptable level of process documentation, tools, and templates required by the framework? **Yes – risk-informed graded approach**
 - ✓ Will the framework support the transition to more formal SE should the effort move beyond the TRL level for ESR&D? **Yes – infrastructure for preserving research integrity and knowledge capture for future technical maturation**

To bridge the valley of death between research and engineering, need to address barriers and questions

Our ask,
your opportunity

On the hunt for collaborative opportunities with other working groups

Discussion

- Thing 1
- Thing 2

Our ask, your opportunity

- Support in expanding your working group's technical product(s) to include consideration of SE in ESRD
- SE in ESRD core team members attend other potential partner working group IW2024 meetings (future?)
- Case study opportunity
 - Use/review the framework, obtain feedback/address gaps from your working group's perspective
 - Search for research domain types
- For more information, contact
 - Ann Hodges (ann.hodges@incose.net)
 - Dr. Michael DiMario (mjdimario@outlook.com)

Questions

Bibliography

- Anton, P.S. 2022. “Challenges to Innovation Transition: The Valley of Death Results from More than a Lack of Flexible Funding”, Acquisition Innovation Research Center, March 2022.
- American Association of Mechanical Engineers (ASME) 2019. “VV-10 Standard for Verification and Validation in Computation Solid Dynamics”, 2019.
- ASME 2009. “VV-20 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer”, 2009.
- American National Standard (ANS) 1999. Quality Guidelines for Research, ANSI/ASQ Z1.13-1999, 1999.
- American National Standards Institute/Project Management Institute (ANSI/PMI) 2021. The Standard for Project Management, ANSI/PMI 99-001-2021, 2021.
- Project Management Book of Knowledge (PMBOK) 2021. A Guide to the Project Management Body of Knowledge, seventh edition, Project Management Institute, 2021.
- Basili, V., Caldiera, G., Rombach, H. n.d. “The Goal Question Metric Approach”, viewed 7 April 2023, [<https://www.cs.umd.edu/users/mvz/handouts/gqm.pdf>](https://www.cs.umd.edu/users/mvz/handouts/gqm.pdf).
- Belcher, B., Rasmussen, K., Kemshaw, M., Zornes, D. 2016. “Defining and Assessing Research Quality in a Transdisciplinary Context”, Research Evaluation, vol. 25, issue 1, January 2016.
- Brennan, T., Ernst, P., Katz, J., Roth, E., “Building an R&D Strategy for Modern Times”, November 2020, McKinsey & Company, <https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/building-an-r-and-d-strategy-for-modern-times>
- Carson, R., Frenz, P., O’Donnell, E. 2015. Project Manager’s Guide to Systems Engineering Measurement for Project Success – A Basic Introduction to Systems Engineering Measures for Use by Project Managers, INCOSE-TP-2015-001-01, ver. 1.0, 2015.
- Delgatti, L. 2013. SysML Distilled: A Brief Guide to the Systems Modeling Language, Addison-Wesley, Boston, MA.
- DiMario, M., Hahn, H., Hodges, A., Mastin, G., Lombardo, N. 2021. Perceived Conflicts in Systems Engineering in Early-Stage Research and Development, INCOSE INSIGHT, vol. 24, issue 3, October 2021.

Bibliography

- DiMario, M., Hodges A. 2023. “Systems Engineering Management in Research and Development Valley of Death”, INCOSE INSIGHT, vol. 26, issue 3, September 2023.
- Granados, A., Tseng C. 2023. “Digital Engineering Enablers for Systems Engineering in Early Stage R&D”, INCOSE INSIGHT, vol. 26, issue 3, September 2023.
- Hahn, H., Hodges, A., Lombardo, N., Kerman, M. 2020. “Implementing Systems Engineering in Early Stage Research and Development (ESR&D) Engineering Projects”, 30th Annual INCOSE International Symposium, Cape Town, South Africa, July 18-23, 2020.
- Hodges, A. 2013. “Bricks for a Lean Systems Engineering Yellow Brick Road”, INCOSE International Symposium, INCOSE, Philadelphia, PA, June 24-27, 2013.
- Hodges, A. 2019. “Systems Engineering in Early Stage R&D Projects”, panel, A. Hodges, SAND2019 7310 C, INCOSE International Symposium, INCOSE, Orlando, FL, July 20-25, 2019.
- Hodges, A., Hahn, H. moderator, Lombardo, N., DiMario, M., Autran, F. 2021. “Systems Engineering at the Hello – Frameworks for Applying SE in Early Stage R&D”, panel, INCOSE International Symposium, INCOSE, virtual conference, July 17-21, 2021.
- Hodges, A., Granados A., 2023. “A Bridge Blueprint to Span the Chasm Between Research and Engineering – A Framework for SE in Early-Stage R&D”, INCOSE INSIGHT, vol. 26, issue 3, September 2023.
- INCOSE 2018. Systems Engineering Competency Framework, INCOSE-TP-2018-002-01.0.
- INCOSE 2021a. A Complexity Primer for Systems Engineers, INCOSE-TP-2021-007-01.
- INCOSE 2021b. Systems Engineering Practices for Small and Medium Enterprises, INCOSE-TP-2021-005-01.
- ISO 10007 2017. Quality Management – Guidelines for Configuration Management, third edition, ISO 10007:2017(E), ISO 2017.
- ISO 15288 2015. Systems and Software Engineering – System Life Cycle Processes, ISO/IEC/IEEE 15288, first edition, 2015.
- ISO 31000 2018. Risk Management – Guidelines, second edition, ISO 31000:2018(E), ISO 2018.
- Merriam-Webster 2023. Viewed 28 March 2023, <[Principle Definition & Meaning - Merriam-Webster](#)>.
- Long, D. 2021. “Schema and Metamodels and Ontologies – Oh My”, INCOSE Enchantment Chapter presentation, January 13, 2021.

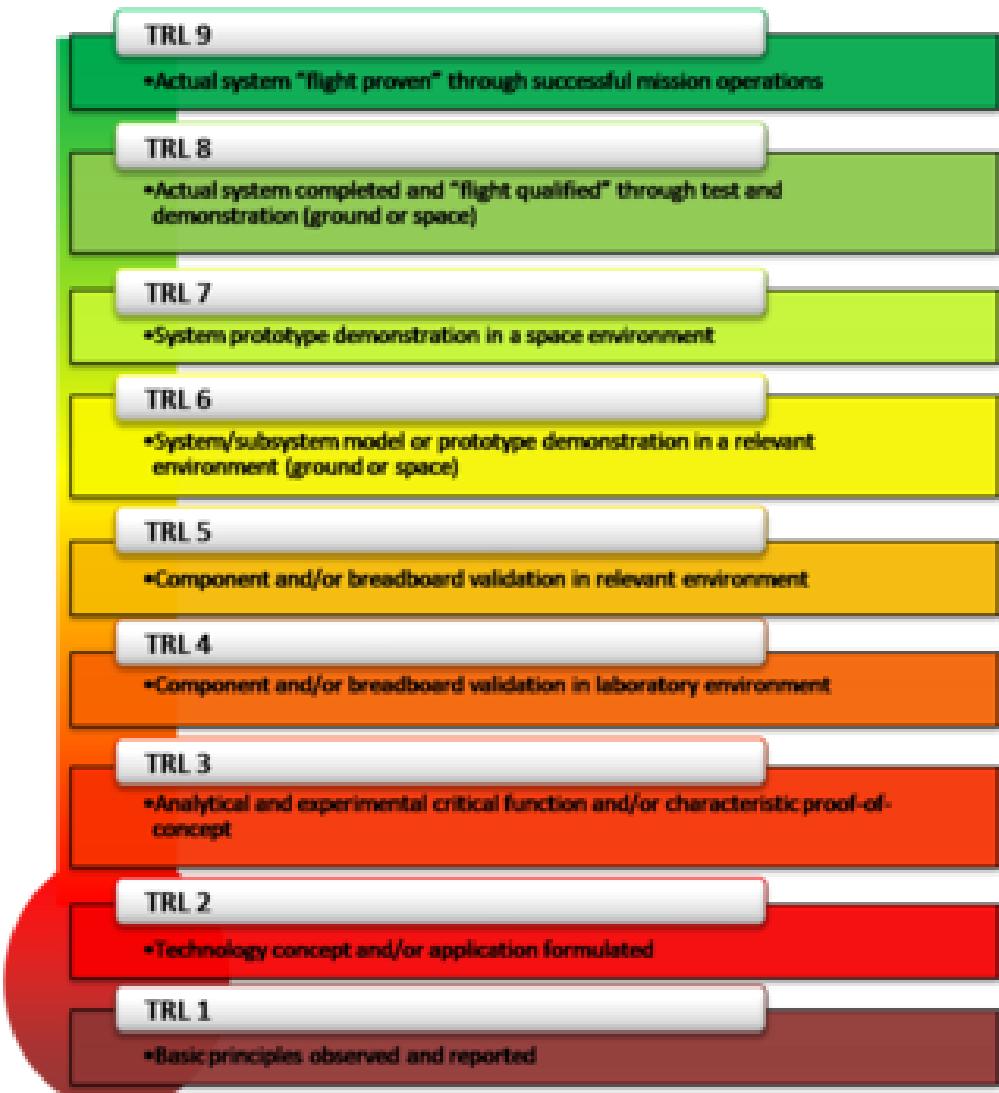
Bibliography

- NASA 2012. “Technology Readiness Level”, last updated 1 April 2021, viewed 26 March 2023, <[Technology Readiness Level | NASA](#)>.
- RAND 2022. “Standards for High-Quality and Objective Research and Analysis”, updated 24 January 2022. Viewed 6 April 2023. <<https://www.rand.org/about/standards.html>>.
- Ritter, C., Rhoades, M. 2023. “Incorporating Digital Twins in Early R&D of Megaprojects to Reduce Cost and Schedule Risk”, INCOSE INSIGHT, vol 26, issue 3, September 2023.
- Roedler, G., Jones, C. 2005. Technical Measurement – A Collaborative Project of PSM, INCOSE, and Industry, ver. 1.0, INCOSE Measurement Working Group, INCOSE-TP-2003-020-01.
- Ruth, S. 2023. “An Approach to Bridging the Gap Between the Attainment of Research Objectives and System Application”, INCOSE INSIGHT, vol 26, issue 3, September 2023.
- Sly, J., Crowne, D. 2023. “Systems Engineering in Technology Development”, INCOSE INSIGHT, vol 26, issue 3, September 2023.
- Solingen, R., Berghout, E., 1999. Goal/Question/Metric Method: A Practical Guide for Quality Improvement of Software Development, McGraw Hill Higher Education, 1999.
- Tsao J., Narayanaurti V. 2021. The Genesis of Technoscientific Revolutions - Rethinking the Nature and Nurture of Research, Harvard University Press, 2021.
- Walden, D., Roedler, G., Forsberg, K., Hamelin, R., Shortell, T. 2015. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, fourth edition, INCOSE-TP-2003-002-04, John Wiley & Sons, New York.
- Williams, A. 2023. “Enhancing Early Systems R&D Capabilities with Systems-Theoretic Process Analysis”, INCOSE INSIGHT, vol 26, issue 3, September 2023.
- World Health Organization (WHO) 2011. “Standards and Operational Guidance for Ethics Review of Health-Related Research with Human Participants”, section V Standards and Guidance for Researchers, WHO Press, 2011.
- Yuta Nakajima, Y., Fukatsu, T., “Applications of Model-Based Systems Engineering for JAXA’s Engineering Test Satellite-9 Project”, ESA MBSE2020, 28-29 September 2020, https://indico.esa.int/event/329/contributions/5515/attachments/3873/5600/0915 - Presentation - Applications_of_Model-Based_Systems_Engineering_for_JAXAs_Engineering_Test_Satellite-9_Project.pdf

2024
Annual **INCOSE**
international workshop

HYBRID EVENT

Torrance, CA, USA
January 27 - 30, 2024


www.incose.org/IW2024

BACKUPS

Problem statement

- Researchers and funding organizations may not understand value of systems engineering (SE) in early-stage projects (TRLs 1-5)
 - SE is unnecessary cost
 - Process-heavy, applicable for mature technologies
- Results in
 - Lack of engineering rigor
 - Lack of understanding of innovation context
 - Increased risk of a “valley of death” between fundamental research and applied development

Downloaded from (NASA 2012)

Working group background

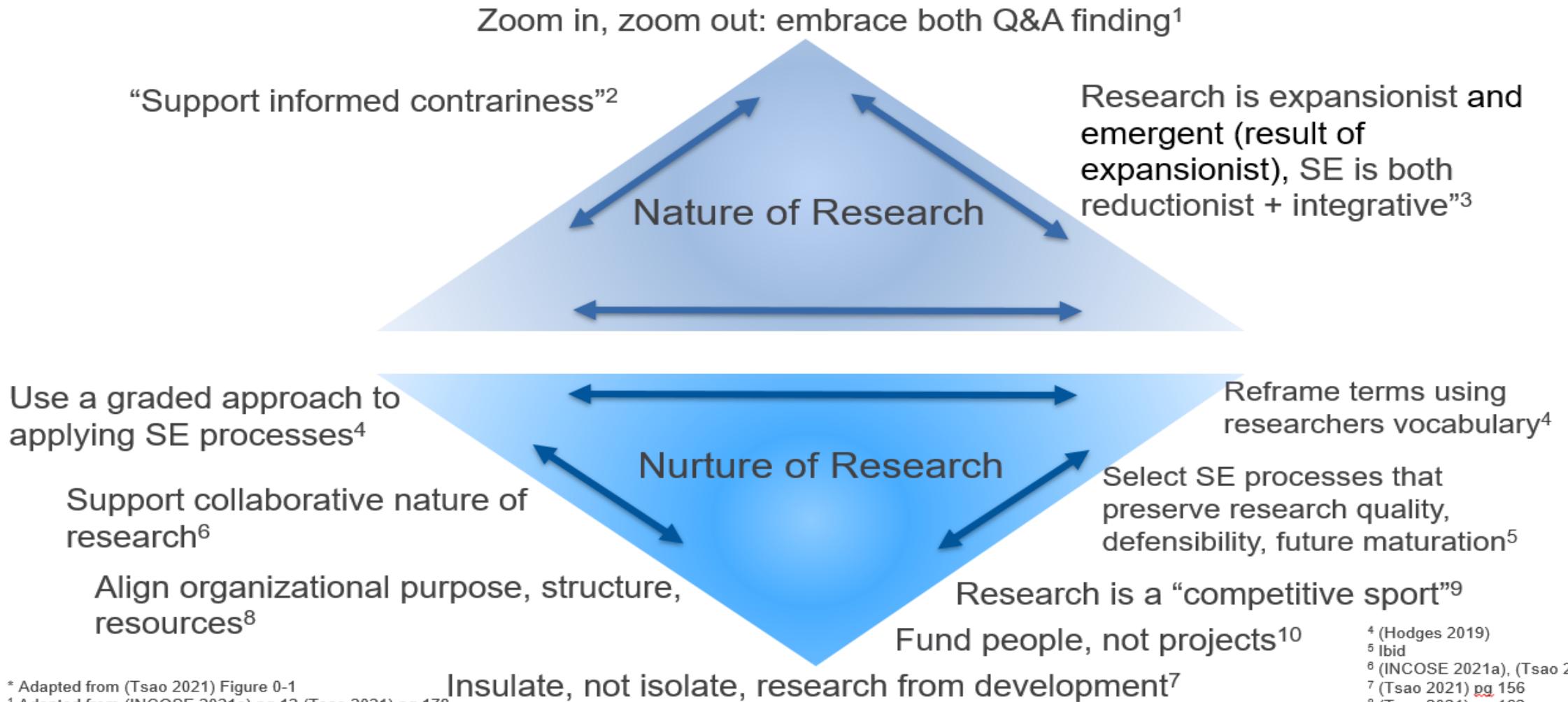
Charter

- ***Purpose:*** To provide an open forum for the development, application, and dissemination of systems engineering principles, best practices, and solutions to scaling systems engineering applications to Early Stage R&D (ESR&D) projects allowing the systems engineering effort to be tailored and commensurate with the anticipated risk to ensure the ESR&D outcomes are achieved
- ***Primary Goal:*** To provide knowledge, guidelines, and frameworks for the application of systems engineering in ESR&D

Working group background

Charter

- **Scope:** Focus on activities at Technology Readiness Levels (TRLs) 1 – 5
- **Outcomes:**
 - An ESR&D SE framework that contains guidelines and processes for the “right” and “right-sized” tailored SE practices and products based on a TRL of 1-5 and other characteristics e.g., organizational culture and philosophies
 - Papers, articles, briefings, and tutorials
 - Support the development of additions to the INCOSE SE Handbook and standards related to ESR&D



Framework elements – principles

- Merriam-Webster definition: a principle “is a comprehensive and fundamental law, doctrine, or assumption; a rule or code of conduct”
- A belief that influences actions and/or explains the nature or workings of something
- Principles provide a foundation for an SE in ESR&D framework
 - Guidelines, processes, tools for the “right” and “right-sized” tailored SE activities and deliverables
 - Apply to a wide range of research organizations, regardless of mission – industry, academia, government
 - Sensitive to the nature of R&D – culture & goals
 - Reframe SE wording for R&D culture
 - Enhance integrity and repeatability of R&D “products”
 - Support the value proposition for applying SE in ESR&D

Framework elements – principles

* Adapted from (Tsao 2021) Figure 0-1

¹ Adapted from (INCOSE 2021a) pg 12 (Tsao 2021) pg 178

² Adapted from (Tsao 2021) pg 182

³ (DiMario 2021)

⁴ (Hodges 2019)

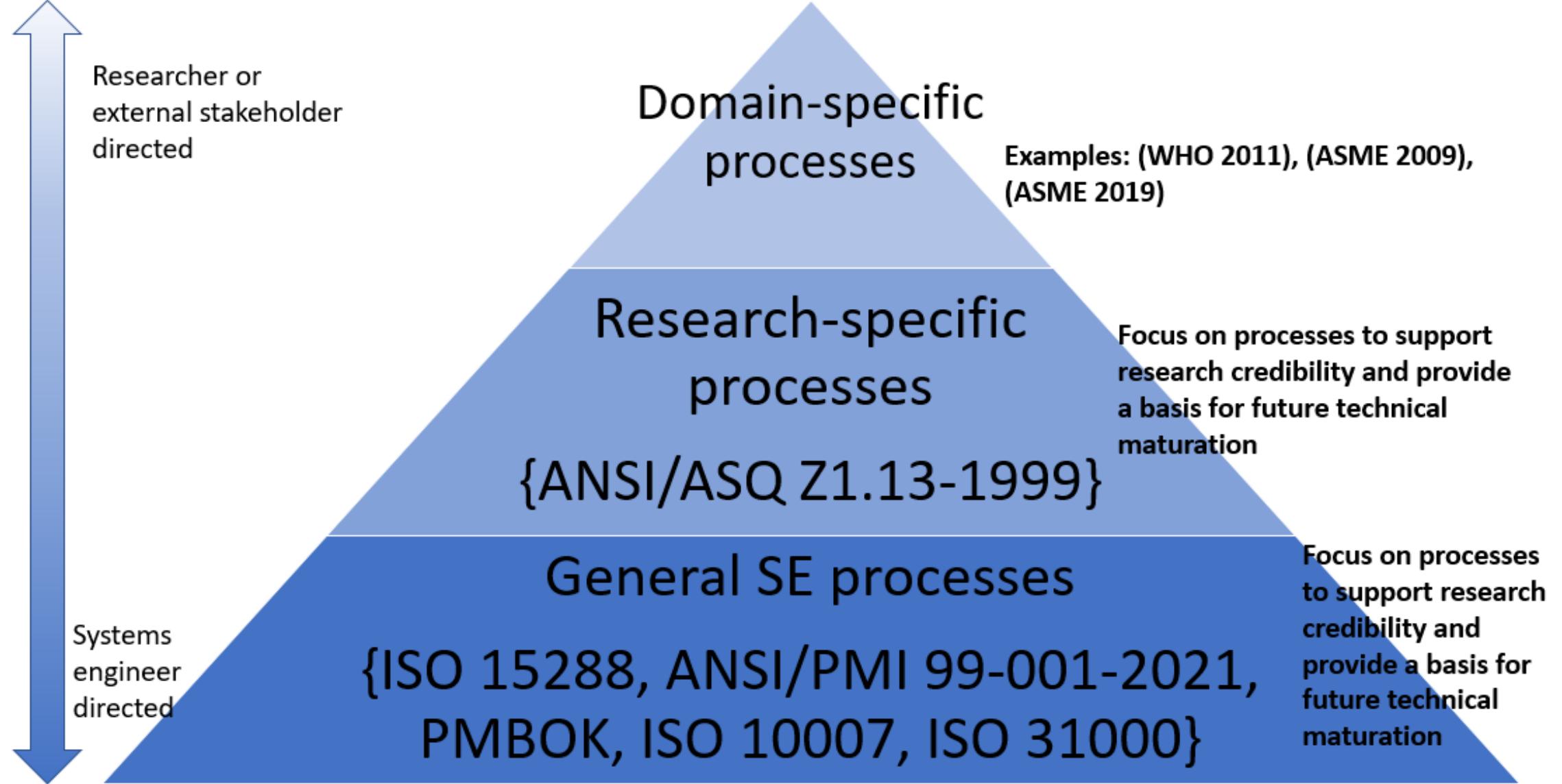
⁵ Ibid

⁶ (INCOSE 2021a), (Tsao 2021)

⁷ (Tsao 2021) pg 156

⁸ (Tsao 2021) pg 162

⁹ (Tsao 2021) pg 192


¹⁰ (Tsao 2021) pg 159

Framework elements – standards based

- Industry standards reflect best practices, provide a foundation for recommended practices/deliverables
- Can provide increased credibility and confidence in the research process and results for stakeholders
- Consider broadly-accepted SE standards, more narrowly-focused domain standards, and standards important to external stakeholders
- Crucial to apply critical thinking regarding the appropriate standards
- Application of standards need to be rigor appropriate for ESR&D
- Reframe terminology to be understandable to researchers

Framework elements – standards based

Framework elements – TRL context sensitive guidance/roadmap

Example: Requirements Definition and Management

TRL Level Activities & Deliverables / Process Areas	BASIC RESEARCH 1 - Basic principles observed and reported	BASIC RESEARCH 2 - Technology concept and/or application formulated	TECHNOLOGY DEVELOPMENT 3 - Analytical and experimental critical function and/or characteristic proof- of-concept	TECHNOLOGY DEVELOPMENT 4 - Component and/or breadboard validation in laboratory environment	TECHNOLOGY DEVELOPMENT / DEMONSTRATION 5 - Component and/or breadboard validation in relevant environment	TECHNOLOGY DEMONSTRA- TION 6 - System/ subsystem model or prototype demonstration in relevant environment
Requirements Definition and Management	<ul style="list-style-type: none"> Identify research objectives, sponsor key performance parameters Specify TRL-specific domain requirements for the relevant domain(s) Specify approach for capturing and managing research objectives, performance parameters, and derived requirements Implement the management approach 	<ul style="list-style-type: none"> Refine research objectives, performance parameters, TRL-specific domain requirements based on experimental results Research → engineering transition(s) defined and requirements considered Identify figures of merit, trade studies, relevant simulations and needed fidelity, considering all life-cycle phases Conduct trade studies, simulations, analyze results for refining research objectives and identifying derived requirements Manage changes to research objectives, requirements 	<ul style="list-style-type: none"> Refine research objectives, performance parameters, TRL-specific domain requirements based on experimental results Refine figures of merit, trade studies, relevant simulations and increased fidelity Conduct updated trade studies, simulations, analyze results for updating research objectives, derived requirements and architecture alternatives Manage changes to research objectives, requirements Specify requirements management approach Specify research objectives, performance parameters, TRL-specific domain requirements and other derived requirements in a format compatible for import into an MBSE tool 	<ul style="list-style-type: none"> Continue the first 4 activities from TRL 3 Implement the requirements management approach Import research objectives, performance parameters, TRL-specific domain requirements and other derived requirements in a format compatible for import into an MBSE tool 	<ul style="list-style-type: none"> Continue the first 4 activities from TRL 3 Continue refining the requirements in an MBSE tool 	<ul style="list-style-type: none"> Continue the activities from the previous TRL
			import into an MBSE tool			

Framework elements – TRL context sensitive guidance/roadmap

SE activities +
deliv. by TRL

Framework elements – training

- Systems Engineer provides enough knowledge and skills to research team to understand + perform SE activities
 - Strategic: Facilitates determination of appropriate rigor level, establishes infrastructure (e.g., templates and processes) for the team
 - Tactical: Facilitates execution and monitoring of the SE activities in support of PI (mentor)
- PI and other research team leads provide the Systems Engineer with sufficient domain knowledge to tailor the SE practices for the team
 - PI coaches the Systems Engineer on the terminology the team will understand, tools to plan/conduct/capture/analyze results
- Domain Leads provide details on their domain to include in the SE roadmap to PI and Systems Engineer

Use a participative and coaching/mentoring approach for applying the SE framework

Framework elements – measures and metrics

- Definitions:
 - A “measure” is a value of something, such as temperature
 - A “metric” is comparing a value to some threshold, such as body temperature to “fever”
- Measures and metrics useful in assessing current performance, set goals for improvement, and forecast potential outcomes given the current context
- Assessment with respect to research objectives provides more effective and relevant information to support research progress
- Suggest Goal/Question/Measure-Metric approach
 - For a goal, pose questions to provide insight into the goal’s status
 - For a question, associated measures or metrics provide data (qualitative or quantitative) to address the question
- There are likely measures/metrics that are focused on the scientific exploration of the research project (e.g., key performance parameters or the project’s specific research objectives)

Framework elements – measures and metrics example for SE in ESR&D

Goals / Questions, Measures-Metrics	Preserve research integrity, credibility	Provide foundation for future technical maturation
Are requirements defined and managed? <ul style="list-style-type: none"> · % requirements in compatible format for more formal requirements mgt (goal 100% as approach TRL 4) · # requirements change over a time period (stability) 	X	X
Is architecture defined and managed for each relevant research domain? <ul style="list-style-type: none"> · % architecture defined for relevant domains 		X
Is a V&V approach defined and used? <ul style="list-style-type: none"> · % coverage of requirements, architecture for V&V planning items · % planned V&V conducted · % "pass" results · # of incomplete or incorrect items identified (implies technical debt) 	X	X
Are technical and programmatic items to be configuration managed identified? Are those configuration items version controlled? <ul style="list-style-type: none"> · % items to be configuration managed version controlled 	X	X
Is a change management approach specified and used? <ul style="list-style-type: none"> · # changes that fall under the criteria for change management over some specified time period are requested, implemented, verified 	X	X
Is a risk management approach specified and used? <ul style="list-style-type: none"> · risk register exists, updated within some specified time period · # severe and high technical and programmatic risks over some specified time period · trend of severe and high technical and programmatic risks over some specified time period 	X	X
Is an issues/action item tracking approach specified? <ul style="list-style-type: none"> · # of issues by severity level · trend of higher severity level issues over some specified time period 	X	X

Framework elements – improvement

- Measures and metrics trends provide insight
 - Gaps in technical progress
 - Issues and risks
 - Identifying and addressing gaps is crucial to assure research project success
- Domain-specific TRL requirements/definitions may need to be adjusted as more knowledge is gained from research analysis