~ Fraunhofer

IKS

Fraunhofer Institute for Cognitive
Systems IKS

~

Prof. Dr. Simon Burton

L 1 —
~ ———



Cognitive Safety-Critical Cyber Physical Systems

Cognitive systems are software-intensive technical systems that imitate cognitive
capabilities such as perception, learning, and reasoning.

Automated driving Industrial Robotics Driverless trains Medical devices

\
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Traditional Approach to Safety

Functional safety (ISO 26262):
Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems

Risk associated with
malfunctioning behaviour

Random hardware errors Systematic errors (HW and SW)

259  FUNC(void, KVM CODE) NvM CalcCrc
260 |

25l PZVAR( uincs, AUTOMATIC, NVM APPL DATA ) NvM DataAddress
262 )
263 |

264 #if ( NVM_NUMBER OF_CALC_CRC32_BLOCKS > 0 )
265 /* If current block use 32 bit crc ¥/

266 1f (KVM_BD CRCTYPE (MvM CurrentBlockDescriptorPtr->blockDeszc) =
267 {
268 NvA_CalcCrc_Int3z( NvM DataAddress ):
Photo: Christian Taube - Own work Picture: Mathworks
-
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What’s changing?

S‘ource: https://www.bbc.com/news/world-asia-india-38155635 Source: https://velodynelidar.com Source https://www.cityscapes-dataset.com/examples
Scope & unpredictability of Inaccuracies & noise in Heuristics or machine
operational domain and critical environmental sensors and learning techniques with
events signal processing unpredictable results

_—
4 01.06.2022 © Fraunhofer IKS Public information % Fraunhofer

IKS



Case Study — Uber Tempe incident
Interacting layers of complexity and uncertainty

b v/ Time to
s |- V Impact Speed Classification and Path
i‘ ’4 N (seconds) | (mph) Prediction® Vehicle and System Actions®
| 4 3
" Riglﬁt e 49 351 Vehicle begins to accelerate frorr_\ 3_5 mph
I lane in response to increased speed limit.
Left turn ) -58 441 - Vehicle reaches 44 mph.
-h6 443 ification: Vehicle—by Radar makes first detection of pedestrian
< radar (classified as vehicle) and estimates
Path_prediction None; not on | speed-
path of SUV
52 446 Classification: Otherby lidar )| Lidar detects unknown object. Object is
Path prediction: Static; not on considered new, racking history is
J if path of SUV unavailable, and velocity cannot be
Pedestrian . 3 determined. ADS predicts object's path as
positions & i static.
N ory - AN o 42 448 Classiﬁcatiyhdal Lidar classifies detected object as vehicle;
1| 43.2 mph ; P e Path prediction SFafic. noton | tisis a changed classffication of object
|1.2 s to impact | e path of SUV ’ and without a tracking history. ADS
3 . '_ ' A predicts object’s path as static.

-30 448 Classification- Vehicle—by lidar | Lidar retains classification vehicle. Based
Path prediction Left through | on racking history and assigned goal, ADS
lane (nextto SUV); not on path predicts object's path @s traveling in left
of SUV ' through lane.

-38t0-27 |447 Classmcanu@%@ Object’s classification alternates several
between vehicle and other—by | times between vehiele-and-other-At each
lidar change Sracking history is unavailable:
Path prediction’ alternates ADS predicts object’s path as static. When
between static and left through | detected object’s classification remains
lane; neither considered on path | Same, ADS predicts path as traveling in left

{ Bl of SUV through lane.
. Through =
N\ \ lanes = -26 46 Classificatio @- y lidar Ligia_r classifies detecte_d obJ_ecl as bi_cycle,
. { Path prediction’ Sfatic, noton | tis is a changed classification of object
N\ N\ 1 Rk path of SUV ard object s without a tracking history.
\ : | 44.8‘mph . ADS predicsb patTas Staic.
\ 14.2 s to impact 25 446 | Classification: Bicycle—hy lidar | Lidar retains bicycle classification; based
\ < \ ‘ P Path predictiof. Left through on tracking history and assigned goal, ADS
% N G ; lane (next to SUV) miatan path | Predicts bicycle’s path as traveling in left
N\ N 1GoogleEarth \ hroudh lane
Q n{on N . \ R | Map date: 8/28 of SUV g -

Source: National Transportation Safety Board. Collision between vehicle
controlled by developmental automated driving system and pedestrian
Tempe, Arizona march 18, 2018. 2019.
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ISO 21448: Failure of the intended functionality:
Absence of unreasonable risk due to hazards resulting
from functional insufficiencies of the intended
functionality or by reasonably foreseeable misuse by
road users

Triggering condition: Specific conditions of a
scenario that serve as an initiator for a subsequence
system reaction contributing to either a hazardous
behaviour or an inability to prevent or detect and
mitigate a reasonably foreseeable indirect misuse

: Fail f |
Technlcal ailure of system to correctly detect

pedestrian and avoid collision
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Case Study — Uber Tempe incident
Interacting layers of complexity and uncertainty

I‘"\ 0 d
| =
‘ Right turn
J Iaqe

Left turn

Through'
lanes

Google Earth
) | Map

Source: National Transportation Safety Board. Collision between vehicl
controlled by developmental automated driving system and pedestrian
Tempe, Arizona march 18, 2018. 2019.
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Time to
Impact Speed Classification and Path
(seconds) | (mph) Prediction® Vehicle and System Actions®

49 351 Vehicle begins to accelerate from 35 mph

in response to increased speed limit.

58 441 - Vehicle reaches 44 mph.

-h8 443 ification: Vehicle—by Radar makes first detection of pedestrian

< radar (classified as vehicle) and estimates
Path_prediction: None: not on | speed-
path of SUV

52 446 Classification: Otherby lidar )| Lidar detects unknown object. Object is
Path prediction: Static: not on considered new, racking history is
path of SUV unavailable, and velocity cannot be

determined. ADS predicts object's path as
static.

42 448 Classificatio w‘ lidar | Lidar classifies detected object as vehicle;
Path prediction” SFafic; not on this is a changed classification of object
path of SUV ’ and without a tracking history. ADS

predicts object’s path as static.

-30 448 Classification- Vehicle—by lidar | Lidar retains classification vehicle. Based
Path prediction’ Left through an tracking history and assigned-goal ADS
lane (next to SUV); not on path predicts object's path @s traveling in left
of SUV ' through lane.

-3810-27 | 447 Mﬂm@g@ Object's classification altemales several
between vehicle and other—by | imes betweenveh her-At each
lidar change Sracking h|st0|y is unavalla B
Path prediction” alternates ADS predicts object’s path as static When
between static and left through | detected object’s classification remains
lane; neither considered on path | Same, ADS predicts path as traveling in left
of SUV through lane.

-26 46 Classificatio @- y lidar | Lidar classifies detected obJecl as chche
Path prediction’ Sfafic, noton | tis i @ changed cla
path of SUV ard object is wnhout a lrackmg hlslory

ADS predictsbr .

-25 446 Classification: Bicycle—by lidar | Lidar retains bicycle classification; based
Path predictiof. Left through on tracking history and assigned goal, ADS
lane (next to SUV) miatan path | Predicts bicycle’s path as traveling in left
of SUV through lane.

e

Public information

ISO 21448: Failure of the intended functionality:
Absence of unreasonable risk due to hazards resulting
from functional insufficiencies of the intended

functionality or by reasonably foreseeable misuse by

road users

Indirect misuse: £.9. lack of monitoring by the
human operator due to Automation Complacency

Human factors

Technical

Failure of safety driver to detect

that system was not operating
correctly

Failure of system to correctly detect

pedestrian and avoid collision
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Case Study — Uber Tempe incident
Interacting layers of complexity and uncertainty
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Source: National Transportation Safety Board. Collision between vehicl
controlled by developmental automated driving system and pedestrian
Tempe, Arizona march 18, 2018. 2019.

Time to
Impact Speed Classification and Path
(seconds) | (mph) Prediction® Vehicle and System Actions®

49 351 - Vehicle begins to accelerate from 35 mph

in response to increased speed limit.

58 441 - Vehicle reaches 44 mph.

-h6 443 ification: Vehicle—by Radar makes first detection of pedestrian

< radar (classified as vehicle) and estimates
Path_prediction None; not on | speed-
path of SUV

52 446 Classification: Otherby lidar )| Lidar detects unknown object. Object is
Path prediction: Static; noton | Considered new, tracking history is
path of SUV unavailable, and velocity cannot be

determined. ADS predicts object's path as
static.

42 448 Classificatio w‘ lidar | Lidar classifies detected object as vehicle;
Path prediction” Sfafic; noton | this is a changed classification of object
path of SUV ’ and without a tracking history. ADS

predicts object’s path as static.

-30 448 Classification- Vehicle—by lidar | Lidar retains classification vehicle. Based
Path prediction Left through | on racking history and assigned goal, ADS
fane (nextto SUV); not on path predicts object's path s traveling in left
of SUV ' through lane.

-38t0-27 |447 Classiﬁcanm@%@ Object’s classification altemales several
between vehicle and other—by | times between-veh sther-At each
lidar change Sracking h|st0|y is unavalla B
Path prediction” alternates ADS preicts objects pah as taic. When
between static and left through | detected object’s classification remains
[ane; neither considered on path | Same, ADS predicts path as traveling in left
of SUV through lane.

28 446 | Classificatio i@- y lidar | Lidar classifies defected ob]ecl as hchcJe
Path prediction’ Sfafic, noton | tis i @ changed cla
path of SUV ard object is wnhom a lracklng hlslory

ADS predictsbr atic.

-25 446 Classification: Bicycle=hy lidar | Lidar retains bicycle classification; based
Path predictiof. Left through on tracking history and assigned goal, ADS
[ane (next to SUVJ miatan path predicts bicycle’s path as traveling in left
of SUV through lane.

e

Failure to regulate accountability
for safety of automated driving

Governance

Inadequate engineering and
operating processes,

Management
lack of oversight of safety driver

Failure of safety driver to detect
that system was not operating
correctly

Human factors

: Fail f |
Technlcal ailure of system to correctly detect

pedestrian and avoid collision
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Systemic Failures
Consequences of system complexity and uncertainty

o Systemic Failures*:

Failure at a system level caused by interactions between behaviours of
the systems components and interactions with or dependencies with its
environment, e.q.:

n
A
2 :
é Crash location
I S
o -

Pedestrian
positions

": .
F3
' EFAtELAT
43.2 mph ; .

¥

TR - = Governance: Inadequate deployment decisions, inadequate
L requlatory control

FREE = Management and operations: Accountability mismatch,
. unanticipated risks

~

\ l— . = Human factors and technical: model mismatch, decision mismatch,
N L i authority mismatch

\ ,‘v‘(";oogle Earth
\ 1 Map ane

8128

Source: National Transportation Safety Board. Collision between vehicle
controlled by developmental automated driving system and pedestrian
Tempe, Arizona march 18, 2018. 2019.

*See: https://www.raeng.org.uk/publications/reports/safer-complex-systems

—
8 01.06.2022 © Fraunhofer IKS Public information % Fl'au n hOfer

IKS


https://www.raeng.org.uk/publications/reports/safer-complex-systems
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System complexity
Emergent properties of complex systems

A complex system exhibits behaviours that are
emergent properties of the interactions between the
parts of the system, where the behaviours would not be
predicted based on knowledge of the parts and their
interactions alone.

Caused by:

= Semi-permeable boundaries
= Non-linearity, mode transitions, tipping points

= Self-organization and ad-hoc systems

—
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Consequences of system complexity
The semantic gap

Semantic Gap* - discrepancy between the intended
and specified functionality, caused by:

= Complexity and unpredictability of the operational
domain

= Complexity and unpredictability of the system itself

= Increasing transfer of decision function to the system

*Burton, Simon, et al. "Mind the gaps: Assuring the safety of autonomous systems from an engineering, ethical,
and legal perspective.” Artificial Intelligence 279 (2020): 103201.
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Uncertainty:
Any deviation from the unachievable |d
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*W. E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support”. In: Integrated Assessment 4.1 (Mar. 2003), pp. 5-17. ISSN: 1389-5176.

DOIl: 10.1076/iaij.4.1.5.16466.

01.06.2022 © Fraunhofer IKS Public information

~ Fraunhofer

IKS

m |



Uncertainty
Dimensions of uncertainty

Location:
Environment uncertainty includes uncertainty in the execution
context of the system and uncertainty arising from the unpredictable

behavior of humans that the system interacts with.

Goals uncertainty manifests due to imprecise specification, modeling,
and derivation of the system’s goals (including safety goals).

Model uncertainty results from the failure to adequately model the
system, its environment, or the behavior thereof.

Functions uncertainty is caused by system functions with non-
deterministic, inaccurate, or unexpected effects and side-effects.

Resources uncertainty occurs because of changes to the essential

components of the system, e.g. due to failures, resulting in some of the

system’s functionality or resources becoming unavailable.

Levels of uncertainty:

Statistical uncertainty can be expressed in statistical terms, such as
with probability distributions or using belief theory (Quantitative).

Scenario uncertainty can only be described using scenarios, which are
plausible states of the system and/or its environment without any

statistical support (Qualitative).

Lack of awareness means the system is not aware that its knowledge is
subject to uncertainty = Requires measures external to the system

°° @2

2

\
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Uncertainty
Technical uncertainty and machine learning

Data as the specification:
= No explicit definition of “safe” behaviour

Complex operational design domain

= Distributional shift / scalable oversight: Dealing with rare but
critical events and changes in the environment over time

Robustness and generalisation:
= (Correct) outputs sensitive to small changes in the inputs

Prediction uncertainty:

= Confidence scores not necessarily indication of probability of
correctness

Explainability:

= Learnt concepts are not understandable by humans

—_—
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Uncertainty
Reducing uncertainty in machine learning: Safe-ML-Ops

Constructive measures

Function development based Operation-time measures
on real and synthetic training to reduce residual errors

data
Definition of acceptance Safety assurance case in
criteria including ML-specific accordance to international

properties NENEI

| g &Y
5 + { Measurement of performance Analyse causes of errors based —
g0 of the ML function, including use on meaningful ML metrics =7

of simulations E }-’\D

Analysis and test

= |terative development based on increasing understanding of the performance characteristics of the ML function, influence of environmental
factors and the effectiveness of measures to reduce the impact of residual errors

= Depends on a causal understanding of the sources of uncertainty and errors in the ML function

= Objective: realistic evaluation of the statistical and scenario uncertainty in the ML function

-_—
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Uncertainty
Understanding the technical impact of uncertainty within the system

Uncertainty quantification and propagation @ runtime as potential measure to:

= Analysis steps: Uncertainty estimation, design of architectural uncertainty mitigation patterns, uncertainty propagation
= Can relax worst-case assumptions through risk-awareness of current context and thus increase the system’s utility

= Only applicable to addressing quantifiable statistical uncertainty (e.g. can be represented by a Gaussian distribution)

XO = (x(),ux0> -Z Z
Xy = (xp,uy,)
Fy Yo = (Yo, uy,)

Kn-1 = (Xt ,)
F ZO = (Zo, uzo)

Ko = ()

Xp41 = (xn+1vuxn+1)
B Y%= (v )
Examples:

Xpsk = (xn+}c:ux ke ) . . .
e = Inverse-variance weighting

= |SO/IEC GUIDE 98-3:2008(E) Guide to the expression of uncertainty in measurement

N\
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Uncertainty
Self-adaptive systems

Monitor

Self-adaptive software system

> Managing System

Monitor Adapt

Managed System

A

Monitor Effect

01/06/2022 © Fraunhofer IKS

Self-adaptive systems:

Provide resilience against faults and uncertainties within the
system as well as uncertainties and changes within
environment

Assurance challenges*:

Perpetual assurance: continuous generation of evidence that system
requirements are met, despite adaptation of system and environment

Composing assurances: avoiding re-validation for emergent systems
(-of-systems)

Feedback and monitoring: defining observation points for determining when
the assurance process is not effective

*Lemos, Rogério de, et al. "Software engineering for self-adaptive systems: Research challenges in the provision of
assurances." Software Engineering for Self-Adaptive Systems Ill. Assurances. Springer, Cham, 2017. 3-30.

N\

Public information Z | Frau n hOfer

IKS



Uncertainty
Types of uncertainty and mitigation techniques

—
Specification uncertainty Technical uncertainty Assurance uncertainty
Completeness Sensing insufficiencies Completeness
Implicit assumptions ML for perception, planning Validity of evidence
Competing objectives Actuating inaccuracies Stability over time
Test coverage Security vulnerabilities Monotonic safety
Statistical confidence
Design-time controls Operation-time controls
Standardised and restricted domain ontologies Technical redundancy and monitoring
Field validation in silent mode Run-time uncertainty quantification
Uncertainty quantification/propagation analysis Self-adaptation & dynamic risk management
Qualitative evaluation of assurance case confidence Dynamic assurance cases
18 01.06.2022 © Fraunhofer IKS Public information % Fraunhofer
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Uncertainty
Regulation and assurance gaps

Trustworthy Al*:

i

)

"':f. ) s 5 A

O R, » O - <

> | | h‘!- = Technical robustness and safety ©

— ! 'S : —_— L

E 7 “‘U_} D % < Privacy and data governance 'E

T ‘ & O S T =

<  Systematic processes, methods < 3 i pab =

) d < f lecti . % 2 - Diversity, non-discrimination o,

= and tools for collecting evidence = O it e >

. = LLl

- that requirements are met 25 0 . . T

S = ) Societal and environmental <

E SRR s % © 8 well-being [

2 0r _i* _F_J Accountability U

I \/ o “ Human agency and oversight a
Does the system fulfill all the technical criteria What impact will the system have on overall
required to be considered trustworthy? risk for a given operational domain?

*Source: Ethics Guidelines for trustworthy Al, Independent high-level expert group on Artificial Intelligence, EU Commission, 2019

—
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Safety assurance under uncertainty
Summary

Each iteration of technologies introduces new
challenges to safety assurance, currently:

= Increasing automation within an open context

= Use of Al/Machine Learning for safety-critical . R L
funCtionS : g ‘:‘.". .«‘-7“ -~~"‘“. "»_",“5 ,f b v :.;‘VA;

o There is a theory which states that if ever anyone
Systems engineering and safety assurance discovers exactly what the Universe is for and why it

methodologies need to adapt to these challenges is here, it will instantly disappear and be replaced by

. something even more bizarre and inexplicable.
Safety arguments are only as strong as the confidence

in the information they rely on There is another theory which states that this has
already happened.

Douglas Adams, The Restaurant at the End of the Universe

Image: NASA
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Safety assurance under uncertainty
Summary

The topic of uncertainty in safety-critical systems is currently covered from a
number of disparate perspectives. There is a need for:

= Common definitions of various types of uncertainty impacting the safety
of highly automated Al-based cyber-physical systems

= Qverarching development and assurance methodology

This is an evolving discipline, see similar “calls for action”:

Calinescu, Radu, et al. "Understanding uncertainty in self-adaptive systems." 2020 IEEE international
conference on autonomic computing and self-organizing systems (acsos). IEEE, 2020.

Harel, David, Assaf Marron, and Joseph Sifakis. " Autonomics: In search of a foundation for next-generation
autonomous systems." Proceedings of the National Academy of Sciences117.30 (2020): 17491-17498.

—
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Safety assurance under uncertainty

Understand complexity and
sources of uncertainty:

Regulatory factors,
System operation and management,
Human-Machine interaction,
Technical uncertainty

Exacerbating factors

Causes Consequences

Design-time controls

\_

Operation-time controls

J

See also: https://www.raeng.org.uk/publications/reports/safer-complex-systems

Complexity-aware systems safety engineering

Holistic Domain and
Requirements Analysis

Legal, societal and ethical expectations, ODD standards,
System theoretic safety analyses,...

Resilient System Architectures

Uncertainty quantification, Self-adaptive systems, dynamic
risk management,...

Continuous Verification and
Validation

Simulation, extreme value analysis, field testing,...

Burton, S., McDermid, J. A., Garnett, P., & Weaver, R. (2021). Safety, Complexity, and Automated Driving: Holistic Perspectives on Safety Assurance. Computer, 54(8), 22-32

23
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Continuous
Assurance

that a tolerable residual
level of risk has been
achieved, is maintained
and residual assurance
gaps closed in the field
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https://www.raeng.org.uk/publications/reports/safer-complex-systems

Safety assurance under uncertainty
Pragmatic next steps

Deliberate and planned bootstrapping approaches
should be taken to increasing operational context
and functional scope, whilst monitoring impact of
complexity and uncertainty

= Requires a calibrated level of tolerable residual risk

= Observation points must be defined to act as early warning
indicators for increased risk/uncertainty

= Should be considered with the phased introduction of
regulation and standards for automated driving (ALKS,
Highway Chauffer, Delivery Drones,...)

= Applied to across all layers of governance, management and
operations, human factors and technical systems

24 01.06.2022 © Fraunhofer IKS Public information

Monitor
operational
risk
indicators

Monitor
technical
risk indicators

>

Regulatory approach

Monitor

|

iAda pt

Safety Management System

A

Monitor

Effect

Technical system and deployment

conditions

> Continuous assurance

Monitor

|

iAda pt

Technical System

A

Monitor
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Safety assurance under uncertainty
Some ongoing research questions

= Definition of risk acceptance criteria for complex
highly-automated systems

= Bridging the gap between societal and ethical
expectations and technical acceptance criteria

= Role of quantitative and qualitative evidence in
assuring the safety of highly automated Al-based
cyber-physical systems under uncertainty

= Safety assurance of Al/ML

= Uncertainty propagation analysis during design and
run-time uncertainty quantification

= Safety assurance of self-adaptive systems

25 01.06.2022 © Fraunhofer IKS Public information
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Safety assurance under uncertainty
Wrap up

= Quantitative arguments alone are not feasible due to uncertainty in setting targets as well as in demonstrating
that they are met

= System level -1 view required to evaluate the context of the systems and determine causes and impact of
emergent complexity and uncertainty

= The assurance process must acknowledge causes and consequences of complexity and uncertainty

= [terative “Safe Dev Ops” approaches are inevitably required in order continuously uncover and minimize residual
uncertainties in the system and assurance case

= Successive scenario-based validation and deployment nevertheless recommended to limit scope and allow
for a targeted evaluation of triggering conditions

\
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during design and operation to manage the em’e‘rgent risk of ever
more complex systems.
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