
INCOSE Webinar Series
Wednesday 18th November 2020 – Webinar 145

Welcome to the Webinar! Please note that we have moved to the ZOOM
platform. Please join ZOOM audio (Voice over Internet) if you are able to
connect. Otherwise, please see the webinar invitation for dial-in phone lines

ISE&PPOOA a MBSE
Methodology from
System to Software
Architecture

Dr Jose L. Fernandez and Dr Carlos Hernandez

1

2

With thanks to our Sponsor
for 2020

3

INCOSE is offering Webinars

• To provide a forum for
experts in the field of
Systems Engineering to
present information on
the “State of the Art”

• To explain how INCOSE
works, and how to make
the most out of INCOSE
membership

4

INCOSE Systems Engineering
Professional PDU Credit

Please note that you can claim 1PDU credit towards your Systems
Engineering Professional re-certification by attending this webinar.
INCOSE webinars may also apply to the PDU requirements of
other organizations, depending on the subject matter

To qualify, you must have attended through at least 75% of the
webinar for webinars that last less than one hour, or through 45
minutes of the webinar for webinars that last for 1 hour or longer.

Here is the link to details about certification renewal, including
information on PDUs.
http://www.incose.org/certification/CertProcess/CertRenew

http://www.incose.org/certification/CertProcess/CertRenew

5

Choreography

1.Andy Pickard (your host) will introduce the Webinar and the
speakers

2. Jose and Carlos will speak for about 40 to 45 minutes

3.During their talk, participants can write questions using the Zoom
Q&A window

4.After Jose and Carlos complete their talk, they will spend 10 minutes
answering questions that Andy selects from those submitted by the
audience

5.Andy Pickard will provide information about upcoming Webinars and
then end this session

6.This Webinar is being recorded and will be made available on the
INCOSE website to members and employees of CAB organizations

ISE&PPOOA a MBSE Methodology from
System to Software Architecture.

José L. Fernández
jose.fernandez@incose.org

Carlos Hernández
C.H.Corbato@tudelft.nl

Delft University of Technology

6

mailto:jose.fernandez@incose.org
mailto:C.H.Corbato@tudelft.nl

Presenters
Jose L. Fernandez has a PhD in Computer Science, and an Engineering Degree in Aeronautical Engineering,
both by the Universidad Politecnica de Madrid.
He has over 30 years of experience in industry as system engineer, project leader, researcher, department
manager and consultant. He was involved in projects dealing with software development and maintenance of
large systems, specifically real-time systems for air traffic control, power plants Supervisory Control and Data
Acquisition (SCADA), avionics and cellular phone applications. He was associate professor at the E.T.S.
Ingenieros Industriales, Universidad Politecnica de Madrid (UPM).
He is senior member of the IEEE (Institute of Electric and Electronics Engineering) and member of INCOSE
(International Council on Systems Engineering), participating in the software engineering body of knowledge,
systems engineering body of knowledge and requirements engineering working groups of these associations.
He is member of the PMI (Project Management Institute) participating as reviewer of the PMBoK 6th Edition,
2017, and the Requirements management, Practice Guide, 2016.
Carlos Hernandez has a PhD in AI and Robotics, and MSc degrees in Industrial Engineering and Automation
and Robotics, both by the Universidad Politecnica de Madrid.
He is an assistant professor at the Cognitive Robotics Department of TU Delft since May 2019, and principal
investigator in the AIRLab Delft, a research lab on AI and robotics for retails sponsored by Ahold Delhaize. In
2016, Carlos led Team Delft to win the Amazon Robotics Challenge. He is currently coordinator of the ROSIN
and the MROS European projects on robot software, and he has previously participated in projects related to
cognitive robotics and factories of the future.

7

Contents
1. What do we mean by a MBSE methodology?
2. The ISE&PPOOA methodology
3. The ISE&PPOOA dimensions and process
4. The importance of the domain model for the software intensive

subsystems
5. Collaborative Robot example
6. To Conclude

8

1.What do we mean by a MBSE
methodology?

9

MBSE methodology definition
n A Model-Based Systems Engineering

Methodology can be characterized as the
collection of related processes, methods and tools
used to support the discipline of systems
engineering in a model-based or model-driven
context1

1Stefan et al., “Survey of Model-Based Systems Engineering (MBSE)
Methodologies”. INCOSE-TD-2007-003-01)Version/Revision: B, 10 June
2008. INCOSE, Seattle (WA),2008.

n Methodology= processes + methods + tools

10

2.Integrated Systems Engineering
and Pipelines of Processes in
Object Oriented Architectures
(ISE&PPOOA) methodology

11

PPOOA
n PPOOA is an architectural framework (“architecting steps”+”building

elements”) for real-time software.
n The main building elements of PPOOA framework are software

components and coordination mechanisms.
n The main software components are the “domain class” and the

“process” implementing an independent thread of control.
n Coordination mechanisms are the building elements supporting

synchronization and communication.
n A PPOOA “process component” may be implemented using an Ada

task, java thread or by the light processes supported by the real-time
operating system used.

12

Software components and
coordination mechanisms provided

by the PPOOA arch. framework

Controller :
Manages external
events

Domain component/
Algorithmic component:
Performs operations

Structure:
Maintains relations
between objects

Process:
Coordinates work
to others

13

Coordination
Mechanisms:
Synchronization+
communication

Co
m

po
ne

nt
s

ISE&PPOOA
n ISE&PPOOA integrates systems engineering with

PPOOA so it can be applied to non software systems as
well

n ISE&PPOOA is a requirements-driven, model based
systems engineering approach where the main outcomes
are the functional and physical architectures of the
product, system or service to be developed

n We are proposing a way of thinking consistently to
solve an engineering problem, where identifying the
functions and quality attributes of the product to be
developed is a main issue to synthesize the solution

14

ISE&PPOOA is requirements driven

15

Trees, flows and bridges

A

B

D E

C

F

D E F

16

Trees, flows and bridges
n Trees are the diagrams used for hierarchical

representations, for example: functional, quality models,
physical and requirements diagrams.

n Flows are the diagrams used for representing behavior
that is functional flows that describe system behavior
represented here as SysML activity diagrams.

n Bridges are the way to cross over the semantic gap
between two engineering areas. For example “heuristics”
bridge nonfunctional requirements and the system refined
architecture. The “domain model” bridges the system
architecture and the software architecture

17

The use of hierarchies

1
2

Next
Iter.

4

3

18

ISE&PPOOA conceptual model

19

ISE&PPOOA conceptual model-
brief description

The relationships represented in the previous slide are summarized below:

n A system has parts that may be either simple or composite parts. A system
interacts with the environment. These interactions are described by an
operational context that models the interactions as a set of scenarios

n Based on the operational context and scenarios, the engineer translates the set
of specific needs into a set of system capabilities that should be solution
independent. Each capability is a container of system properties that may be
either system quality attributes, physical properties, states or functions

n In contrast to functional requirements that are allocated to system parts,
nonfunctional requirements implementation is essentially different.
Nonfunctional requirements may be met by the application of design
heuristics. For this reason a specific association is depicted between both
concepts

20

3.ISE&PPOOA dimensions and
process

The three dimensions of ISE&PPOOA and the steps to
apply the methodology iteratively to derive the low level
requirements and create the architecture of the system

21

The three dimensions of ISE&PPOOA

22

ISE&PPOOA process

23

System functional architecture

24

System physical architecture

25

4. The importance of the domain
model for the software intensive
subsystems

The integration between the systems engineering modeling process ISE and the
software architecture modeling process (here PPOOA) is achieved by using domain
modeling and responsibility driven software analysis approach supported by CRC
(Class Responsibility Collaborator) cards, a technique proposed by the object
oriented community.

26

PPOOA process

27

Domain model
n A domain model is described using more formalism than textual

descriptions, for example UML class diagrams.
n The domain model is the result of a domain analysis

n Classes in the domain model represent concepts or terms
derived from use cases and the functionalities to be
implemented by software.

n So, classes are abstractions of physical and non-physical
entities for example things, events, roles, descriptions…

n The domain model represents the relations between
classes mainly generalization, specialization, “is part of”, “is
member of” and associations.

n A domain model is an essential input when the subsystem is
shaped in software architecture, design and implementation

28

CRC cards
n CRC cards are index cards, one for each domain model

class, upon which the responsibilities of the class are
briefly documented and a list of classes collaborated with
to achieve those responsibilities

Class name

Software class identity
Class responsibilities

• What the class knows?
• What the class does?

Class collaboration

• Other classes the class is collaborating to achieve its responsibilities

29

Summarizing
n A mere physical system (traditional SE) and a

software system are different
n Software components can be created and destroyed
n Software does not meet Physics laws of mass, energy

and momentum conservation
n Software components are abstractions of physical

and non-physical entities for example events, roles,
descriptions…

n For complex and software intensive systems we need
“best practices+methodologies” that bridge the
system and software semantic gap. Here we have
proposed: domain modeling+ ISE&PPOOA

30

5. Example: Robotic Systems

31

Challenges in robotics for Systems
and Software engineering

32

Team Delft: winner of the Amazon Robotics Challenge 2016

Re-engineering a Collaborative robot

33

Collaborative robot: Mission

Scenarios, needs and capabilities

System

Mission

Software

34

Scenarios: Context

i b d � [Block]�5RERWLF�6\VWHP [Context�Diagram]

<<subsystem>>
: Control

 : Product

: Operator

:RobotSkin

: 5RERW

: SuctionGripper

35

Operational Scenarios

D
ep

lo
ym

en
t

S1 System configuration and
calibration

The operator installs the robot arm and the product containers in the frames, and
moves the robot arm to the reference pose for each container, so all end-effector
poses are calibrated off-line for the robot to be able to reach all the products.

S2 Configure new product
The operator adds a stack of a new product type, possibly of different dimensions
(within a limited variation range), or replaces an existing type with the new one,
and informs the system through the operator interface. The system is capable of
processing order that include the new product type.

O
pe

ra
tio

n

S3 System start The operator powers up all subsystems. The robot arm calibrates its joints.

S4 Manage order
The system receives an order request consisting of several products of one or more
product types, and delivers the order in the bin by autonomously handling the
products.

S5 Pick product The robot moves the gripper to the container of the next product in the order, grasp
an available product, and retreats from the container holding it.

S6 Deliver product The robot delivers the product it is holding with the gripper in the delivery bin.

S7 Refill product
When one of the product stacks is empty, the robot notifies the operator and moves
to a configuration to allow the operator to replace the container with one filled with
products.

S8 Shut down
The operator shutdowns the system through the user interface. As a result, the
status of the containers is stored in memory and the robot arm moves to the stand-
by position

S9 Emergency stop Upon an anomalous behavior, the emergency stop of the robot arm is activated,
stopping any current motion, and this is notified to the operator.

36

Scenario description
and operational needs

Operational Scenario: S5 Pick product
Preconditions • System initialized.

• There is an order accepted and being processed.
• Non-empty containers of products.

Triggering event • Order request. The operator enters the order description.
Description The robot arm performs the actions required to pick a product from the

stack. The system uses the skin sensing information to avoid any
collisions while moving.

Postconditions • Robot is holding a product.
• The number of available products has decreased by one unit.

Operational needs for S5 “Pick product”

ON 2_1 The system shall be able pick products of cylinder or box shape, with a maximum
dimension of 20 cm, offering a top flat surface available for suction.

ON 2_2 The system shall pick the products from container boxes that have an opening at the top of
maximum dimensions 0.6×0.6m, stacked in rows and standing in vertical orientation. The
maximum depth of the containers is 0.3m.

ON 2_3 The system shall complete the pick task in less than 2 seconds if there are no potential
collisions while performing.

… …
37

Capabilities and quality attributes
b d d [Package] Capabilities [Robotic System Capabilities]

Robotic System Capabilities

Manage stacks

Perform the mission autonomously

Handle product safely

High avai labi l i tyHarmless

Quick configurat ion of new
products

Pick product safely

Pick product

Deliver product

Situational-awareness

Support human interaction

Handle product Deliver product safely

Process order

Resilience to contingencies

C5

C3

C1.4

C1.6

C2.1

C2.3

C1.2

C6

C1.3

C1.5

C4

C2.2

C1.1

C2C1

b d d [Package] Quality attributes [Quality attributes Robotic System]

Quality Attr ibutes Collaborative Robot

SafetyReliabil i ty and
Maintainabi l i ty

Efficiency

Changeabil i ty

Avai labi l i ty Harm protect ion

Safety incident

Asset protectionResponse time

Reliabi l i ty of
components

Resilience

protect ion

38

Collaborative robot: System

Functional architecture, (requirements) and
physical architecture

System

Mission

Software

39

Functional Architecture
b d d � [Activity Block] Collaborative Robotic Application [Functional Architecture]

<<act iv i ty>>
Collaborative Robotic

Appl icat ion

<<act iv i ty>>
Move robot

safely

<<act iv i ty>>
Manage stacks

of products

<<act iv i ty>>
Manage order

<<act iv i ty>>
Handle operator

interface

<<act iv i ty>>
Deliver product

<<act iv i ty>>
Coordinate product

operat ion

<<act iv i ty>>
Manage errors

<<act iv i ty>>
Calibrate

<<act iv i ty>>
Pick product

<<act iv i ty>>
Sense obstacle

<<act iv i ty>>
Obtain grasp
trajectories

<<act iv i ty>>
Obtain col l is ion-free

trajectory

<<act iv i ty>><<act iv i ty>>
Execute motion

<<act iv i ty>>
Execute and control
interrupt ib le mot ion

F9F8F7F6

F6.3

F6.2F6.1F5.3F5.2F5.1

F5F4F3F2F1

Grasp

• product • move to stack
• cell 3D model

• request pick • gripper ON INPUTS

OUTPUTS

F4 Manage
stacks of
products

• product index

F5 Move robot
safely • gripper over

product stack

Obtain grasp
trajectories (F6.1)

• trajectory

Activate gripper
(F6.3.1.1)

• gripper suction

Execute motion
(F6.2)

• product picked

40

Physical architecture
b d d [Block] CollaborativeRoboticSystem [Modular Architecture]

<<subsystem>>
Robot

ControlSoftwareSuctionGripper

RobotSkin Frames

<<sys tem>>
CollaborativeRoboticSystem

Control ler Computer

<<subsystem>>
Control

Manipulator

41

DFW�>%ORFN@�&ROODERUDWLYH�5RERW�>)XQFWLRQDO�IORZ�DOORFDWLRQ@

F1.3: order
request

F4.3: Obtain stack
indexes of available
products to complete
the order

F2.1: Get next
product stack index

F5.1: Obtain
collision-free ...

F5.2.2: Wait for 'no
obstacles'

F5.3: Sensed
obstacle

F5.2.1: Cancel current
trajectory

F5.2.3 Command and
monitor trajectory ...

F6.1: Obtain grasp
trajectories

F6.2.1 Command
motion

F5.3.1: Detect
obstacles

F5.2.4 Move robot F5.2.4 Move robot

F6.3.1.1: Activate
gripper

F5.3.2: Update 'no
obstacles'

F5.3.3: Sensed
obstacle

F6.3.2: Generate
suction grasp

skin timer

[islastproduct==true]

[else]

[obstaclesDetected==true]

[else]

Functional flow allocation
b d d [Block] CollaborativeRoboticSystem [Modular Architecture]

<<subsystem>>
Robot

ControlSoftwareSuctionGripper

RobotSkin Frames

<<sys tem>>
CollaborativeRoboticSystem

Control ler Computer

<<subsystem>>
Control

Manipulator

DFW�>%ORFN@�&ROODERUDWLYH�5RERW�>)XQFWLRQDO�IORZ�DOORFDWLRQ@

C
on

tr
ol

R
ob

ot
R

ob
ot

Sk
in

F1.3: order
request

F4.3: Obtain stack
indexes of available
products to complete
the order

F2.1: Get next
product stack index

F5.1: Obtain
collision-free ...

F5.2.2: Wait for 'no
obstacles'

F5.3: Sensed
obstacle

F5.2.1: Cancel current
trajectory

F5.2.3 Command and
monitor trajectory ...

F6.1: Obtain grasp
trajectories

F6.2.1 Command
motion

F5.3.1: Detect
obstacles

F5.2.4 Move robot F5.2.4 Move robot

F6.3.1.1: Activate
gripper

F5.3.2: Update 'no
obstacles'

F5.3.3: Sensed
obstacle

F6.3.2: Generate
suction grasp

skin timer

[islastproduct==true]

[else]

[obstaclesDetected==true]

[else]

42

Collaborative robot: Software

Domain model, structural view,
behavioral view

System

Mission

Software

43

Domain model
1. Create Domain

model

2.a.1 Identify software
components

2.a.2 Specify interfaces

2.b Model subsystem
functional behaviour

2.2 Select coordination
mechanisms

F1 Handle Operator Interface X X

F2 Manage Order X

F3 Coordinate product operation X

F4 Manage stacks of products X

F5.1 Obtain collision-free trajectory X X

F5.3.1 Sense distance to robot arm X

F5.2 Execute and control interruptible trajectory X

F5.3.2 Detect obstacle X

F6.1 Obtain grasp trajectories X

F6.2 Execute uninterruptible trajectory X X

F6.3.1 Control grasp X X X

F7 Deliver product X

F8 Manage errors X X

F1 Handle Operator Interface X X

F2 Manage Order X

F3 Coordinate product operation X

F4 Manage stacks of products X

F5.1 Obtain collision-free trajectory X X

F5.3.1 Sense distance to robot arm X

F5.2 Execute and control interruptible trajectory X

F5.3.2 Detect obstacle X

F6.1 Obtain grasp trajectories X

F6.2 Execute uninterruptible trajectory X X

F6.3.1 Control grasp X X X

F7 Deliver product X

F8 Manage errors X X

F1 Handle Operator Interface X X

F2 Manage Order X

F3 Coordinate product operation X

F4 Manage stacks of products X

F5.1 Obtain collision-free trajectory X X

F5.3.1 Sense distance to robot arm X

F5.2 Execute and control interruptible trajectory X

F5.3.2 Detect obstacle X

F6.1 Obtain grasp trajectories X

F6.2 Execute uninterruptible trajectory X X

F6.3.1 Control grasp X X X

F7 Deliver product X

F8 Manage errors X X

1. Identify functions allocated to software
2. the nouns in their description

44

Domain model
§ Nouns are classes in the domain model.
§ Verbs are relations between the classes.
§ CRC cards are used to define the responsibilities

for each class of the domain model.
Robot domain model

Planner

Coordinator I_Robot_Manipulator

I_Gripper

I_Robot_Skin

Trajectory

Stacks_Status

Robot_Status

I_Operator_Interface

Order_Request_Event

Trajectory_repository

Obstacle_detection
_event

Order_managerOrder

Product

Stacks_manager

1

11

1...n

Order_Request
_Event

Activate
_Event

Obstacle_
detection_

event

Stack_
filled_
Event

CRC card

Class name I_Robot_Skin

Responsibilities - Configure Skin
- F5.3.2 Detect Obstacle
- F1.2 Press resume operation

Collaborations - Coordinator
- Stacks manager

45

PPOOA Diagram + CFAs

Domain Model + CRC Cards

PPOOA architecture

n Refining process
n Use of heuristics1. Create Domain

model

2.a.1 Identify software
components

2.a.2 Specify interfaces

2.b Model subsystem
functional behaviour

2.2 Select coordination
mechanisms

Coordination mechanisms

<<Process>>
I_Operator_Interface

<<St ruc tu re>>
List_Order

<<Con t ro l l e r>>
Coordinator

<<Process>>
I_Robot_Manipulator

<<St ruc tu re>>
Joint�7UDMHFWRU\

<<Domain Component>>
Obstacle

<<Process>> I_Robot_Skin

<<Domain Component>>
Stack_Status

<<Domain Component>>
Planner

<<Domain Component>>
Handle_Stack_Notifications

<<Domain Component>>
Obstacle_Detector

<<St ruc tu re>>
Trajectory_DB

< < A l g o r i t h m > >
Plan_Reparametrizer

<<Domain Component>>
I_Gripper

<<Domain Component>>
Order Manager

<<Domain Component>>
Stack_Filled_Signal

S3

B_Order_Request

S2

S�

CFA Pick product

CoordinatorPlanner Trajectory_DB I_Manipulator I_GripperPlan_Reparametrizer

F5.1.1: request
collision-free traj

F5.1.2: read
trajectories

F5.2.2: wait for 'no
obstacles'

F5.2.3: command
and monitor traj.

F6.3.1.1: activate
gripper

F5.3: Sensed
obstacle

F5.2.1: cancel
trajectory

F6.2.1: command
grasp motion

F5.1.3:
reparametrize

trajectory

Robot domain model

Planner

Coordinator I_Robot_Manipulator

I_Gripper

I_Robot_Skin

Trajectory

Stacks_Status

Robot_Status

I_Operator_Interface

Order_Request_Event

Trajectory_repository

Obstacle_detection
_event

Order_managerOrder

Product

Stacks_manager

1

11

1...n

Order_Request
_Event

Activate
_Event

Obstacle_
detection_

event

Stack_
filled_
Event

46

n Heuristic - Safety: Avoid Non-deterministic Behavior
“Solution based on a database with trajectories obtained offline is used to
generate the motions to retrieve products.”

Structural View

Coordination mechanisms

<<Process>>
I_Operator_Interface

<<St ruc tu re>>
List_Order

<<Con t ro l l e r>>
Coordinator

<<Process>>
I_Robot_Manipulator

<<St ruc tu re>>
Joint�7UDMHFWRU\

<<Domain Component>>
Obstacle

<<Process>> I_Robot_Skin

<<Domain Component>>
Stack_Status

<<Domain Component>>
Planner

<<Domain Component>>
Handle_Stack_Notifications

<<Domain Component>>
Obstacle_Detector

<<St ruc tu re>>
Trajectory_DB

< < A l g o r i t h m > >
Plan_Reparametrizer

<<Domain Component>>
I_Gripper

<<Domain Component>>
Order Manager

<<Domain Component>>
Stack_Filled_Signal

S3

B_Order_Request

S2

S�

47

Behavioral View

CFA Pick product

CoordinatorPlanner Trajectory_DB I_Manipulator I_GripperPlan_Reparametrizer

F5.1.1: request
collision-free traj

F5.1.2: read
trajectories

F5.2.2: wait for 'no
obstacles'

F5.2.3: command
and monitor traj.

F6.3.1.1: activate
gripper

F5.3: Sensed
obstacle

F5.2.1: cancel
trajectory

F6.2.1: command
grasp motion

F5.1.3:
reparametrize

trajectory

n Heuristic - Safety: Avoid Non-deterministic Behavior

48

“Interruptible regions only during motion execution in the shared workspace”

DFW�>%ORFN@�&ROODERUDWLYH�5RERW�>)XQFWLRQDO�IORZ�DOORFDWLRQ@

C
on

tr
ol

R
ob

ot
R

ob
ot

Sk
in

F1.3: order
request

F4.3: Obtain stack
indexes of available
products to complete
the order

F2.1: Get next
product stack index

F5.1: Obtain
collision-free ...

F5.2.2: Wait for 'no
obstacles'

F5.3: Sensed
obstacle

F5.2.1: Cancel current
trajectory

F5.2.3 Command and
monitor trajectory ...

F6.1: Obtain grasp
trajectories

F6.2.1 Command
motion

F5.3.1: Detect
obstacles

F5.2.4 Move robot F5.2.4 Move robot

F6.3.1.1: Activate
gripper

F5.3.2: Update 'no
obstacles'

F5.3.3: Sensed
obstacle

F6.3.2: Generate
suction grasp

skin timer

[islastproduct==true]

[else]

[obstaclesDetected==true]

[else]

Conclusion: ISE&PPOOA for robotics
n ISE&PPOOA provides a method

to formalize and use behavior
models to obtain the system
architecture.

n Domain model allows to
bridge the system and the
software architectures.

n Quality attributes and
heuristics implementing them
allow to reuse known solutions
to obtain and refine the
architecture.

Coordination mechanisms

<<Process>>
I_Operator_Interface

<<St ruc tu re>>
List_Order

<<Con t ro l l e r>>
Coordinator

<<Process>>
I_Robot_Manipulator

<<St ruc tu re>>
Joint�7UDMHFWRU\

<<Domain Component>>
Obstacle

<<Process>> I_Robot_Skin

<<Domain Component>>
Stack_Status

<<Domain Component>>
Planner

<<Domain Component>>
Handle_Stack_Notifications

<<Domain Component>>
Obstacle_Detector

<<St ruc tu re>>
Trajectory_DB

< < A l g o r i t h m > >
Plan_Reparametrizer

<<Domain Component>>
I_Gripper

<<Domain Component>>
Order Manager

<<Domain Component>>
Stack_Filled_Signal

S3

B_Order_Request

S2

S�
CFA Pick product

CoordinatorPlanner Trajectory_DB I_Manipulator I_GripperPlan_Reparametrizer

F5.1.1: request
collision-free traj

F5.1.2: read
trajectories

F5.2.2: wait for 'no
obstacles'

F5.2.3: command
and monitor traj.

F6.3.1.1: activate
gripper

F5.3: Sensed
obstacle

F5.2.1: cancel
trajectory

F6.2.1: command
grasp motion

F5.1.3:
reparametrize

trajectory

b d d � [Activity Block] Collaborative Robotic Application [Functional Architecture]

<<act iv i ty>>
Collaborative Robotic

Appl icat ion

<<act iv i ty>>
Move robot

safely

<<act iv i ty>>
Manage stacks

of products

<<act iv i ty>>
Manage order

<<act iv i ty>>
Handle operator

interface

<<act iv i ty>>
Deliver product

<<act iv i ty>>
Coordinate product

operat ion

<<act iv i ty>>
Manage errors

<<act iv i ty>>
Calibrate

<<act iv i ty>>
Pick product

<<act iv i ty>>
Sense obstacle

<<act iv i ty>>
Obtain grasp
trajectories

<<act iv i ty>>
Obtain col l is ion-free

trajectory

<<act iv i ty>><<act iv i ty>>
Execute motion

<<act iv i ty>>
Execute and control
interrupt ib le mot ion

F9F8F7F6

F6.3

F6.2F6.1F5.3F5.2F5.1

F5F4F3F2F1

Grasp

49

TU Delft research on MBSE for robotics

n Composeable models and
software in robotics

n Metacontrol:
ISE functional model
for self-architecting

n AIRLab Deflt:
AI and Robotics for Retail

Self-adaptation exploiting models @runtime

runtime

Metacontrol

uncertainty

run-time
operation

system
behavior

re-design

design

Design
model Runtime model

control
architecture

mission
reqs.

© RobMoSys https://robmosys.eu/wiki/_media/general_principles:ecosystem:roles-ecosystem.png

https://robmosys.eu

50

Questions?
For more about ISE&PPOOA
Book Practical Model-Based Systems Engineering
n Authors: Jose L. Fernandez and Carlos Hernández
n Publisher: Artech House, 2019
n ISBN-13:978-1-63081-579-0

Other resources
n ISE&PPOOA in OMG wiki:

https://www.omgwiki.org/MBSE/doku.php?id=mbse:ppooa
n PPOOA: http://www.ppooa.com.es/

Factory-in-a-day. Grant agreement No. 609206

This research has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) and Horizon H2020 projects:

ROSIN. http://rosin-project.eu Grant agreement no. 732287

RobMoSys ITP MROS Grant agreement no. 732410

51

https://www.omgwiki.org/MBSE/doku.php?id=mbse:ppooa
http://www.ppooa.com.es/
http://rosin-project.eu/

Upcoming Webinars
(tentative schedule)

Who What When
No webinar scheduled
for December

Information on the webinars is now being posted in INCOSE Connect, in the
INCOSE Library area, at
https://connect.incose.org/Library/Webinars/Pages/INCOSE-Webinars.aspx .
Joining instructions will added around two weeks before the webinar is
scheduled to take place.

http://www.incose.org/
http://www.incose.org/products-and-publications/webinars
https://connect.incose.org/Library/Webinars/Pages/INCOSE-Webinars.aspx

INCOSE International Workshop 2021

Website: https://www.incose.org/iw2021 Registration not open yet

https://www.incose.org/iw2021

54

INCOSE Systems Engineering
Professional PDU Credit

Please note that you can claim 1PDU credit towards your Systems
Engineering Professional re-certification by attending this webinar.
INCOSE webinars may also apply to the PDU requirements of
other organizations, depending on the subject matter

To qualify, you must have attended through at least 75% of the
webinar for webinars that last less than one hour, or through 45
minutes of the webinar for webinars that last for 1 hour or longer.

You can also claim credit for previous webinars you have
attended; please contact info@incose.org if you wish to
know which webinars you attended and if you met the
qualification requirements

mailto:%20info@incose.org

55

With thanks to our Sponsor
for 2020

