Welcome to the Webinar! Please note that we have moved to the ZOOM
platform. Please join ZOOM audio (Voice over Internet) if you are able to
connect. Otherwise, please see the webinar invitation for dial-in phone lines

INCOSE Webinar Series

Wednesday 15" November 2023 — Webinar 169

Systems engineering and software engineering:
Interactions among people, processes, and technologies

Richard (Dick) Fairley

Systems engineering and software engineering:
Interactions among people, processes, and technologies

ontact me at

dickfairley@gmail.com

SE and SWE - Dick Fairley

~

=

Some of my INCOSE involvements 4

Joined INCOSE in 2012
Currently Assistant Director for Accreditation of the INCOSE Academic Council
« and a member of the ABET curriculum committee
Member of the team that developed the ABET program criteria for accrediting
systems engineering academic programs
— and developed training material for systems engineering program evaluators
iIn 6 ABET-EAC professional societies
Member of the team that developed Version 1 of the Systems Engineering Body
of Knowledge (SEBoK)
Contributed two articles to the Systems Engineering Handbook V5
— first articles on software engineering to appear in the SE Handbook

SE and SWE - Dick Fairley 3

Other contributions ”{CQEE

« Co-editor of the Software Engineering Body of Knowledge (SWEBOK, V3)
— along with colleague Pierre Bourque
— 28 contributing authors from several countries

« Team leader and primary author for development of the Software
Engineering Competency Model (SWECOM)

 https://www.computer.org/volunteering/boards-and-

committees/professional-educational-activities/software-engineering-
competency-model

SWE, like SE, has a body of knowledge and a competency model

SE .and SWE — Dick Fairley 4

https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model

Today’s Agenda

Two key references

SE & SWE relationships

SE-SWE people interactions
SE/SWE technology issues
Hardware-software process issues

SE and SWE — Dick Fairley

Two key references - 1

SEBoK (sebokwiki.org)
Part 3 System Lifecycle Models
Part 6 KA: Systems Engineering and Software Engineering
Five Topics in the Part 6 KA
1. Software Engineering in the Systems Engineering Life Cycle
Tom Hilburn & Dick Fairley
2. The Nature of Software
Dick Fairley
3. An Overview of the Guide to SWEBOK
Dick Fairley & Pierre Bourque (V3 Editors)
4. Key Points a Systems Engineer Needs to Know about Software Engineering
Dick Fairley and Alice Squires
5. Software Engineering Features - Models, Methods, Tools, Standards, and
Metrics
Tom Hilburn

SE and SWE - Dick Fairley 6

https://sebokwiki.org/wiki/Software_Engineering_in_the_Systems_Engineering_Life_Cycle
https://sebokwiki.org/wiki/The_Nature_of_Software
https://sebokwiki.org/wiki/An_Overview_of_the_SWEBOK_Guide
https://sebokwiki.org/wiki/Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics

Two key references - 2

My book
Fairley, R.E. 2019. Systems Engineering of Software-Enabled Systems* Hoboken, New
Jersey: John Wiley and Sons

*A software-enabled system is a system for which software enables a mission, business,
or product

Systems engineering and software engineering

 Why do new systems and modified legacy systems increasingly rely on
Incorporated software?
— because some system requirements and constraints can be more
quickly and easily realized in software than in hardware
— and because software is more malleable than is hardware
« and is usually more easily modified that hardware as
requirements, constraints, and hardware-software interfaces
evolve
 SE and SWE are “intimately intertwined

%

*Boehm, B. W. "Integrating Software Engineering and Systems
Engineering."” The Journal of INCOSE Vol. 1 (No. 1): pp. 147-151. 1994

SE and SWE - Dick Fairley

=

—
—

g =

N4

]

—
2 \kﬁ

SEBoK Part 6 KA: Systems Engineering and Software Engineering | ‘C EE
Table 1. Adaptation of Methods Across SE and SWE (Fairley and Willshire 2011) Qggggy
Reprinted with permission of Dick Fairley and Mary Jane Willshire. -

Systems Engineering Methods Software Engineering Methods
Adapted to Software Engineering Adapted to Systems Engineering
 Stakeholder Analysis * Model-Driven Development
* Requirements Engineering UML-SysML
* Functional Decomposition « Use Cases
* Design Constraints * Object-Oriented Design
* Architectural Design * Iterative Development
 Design Criteria * Agile Methods
* Design Tradeoffs « Continuous Integration
* Interface Specification * Process Modeling
 Traceabllity * Process Improvement
« Configuration Management * Incremental Verification and
« Systematic Verification and Validation Validation

SE and SWE - Dick Fairley 9

Software is malleable IN&%E

Composable and readable software (source code) is composed
by typing symbols and clicking on icons
A single missing, erroneous, or misplaced symbol, if undetected,
can cause a large system to behave incorrectly or crash

« for example, a “<” when a “>" was intended, or a missing ”;”
Why might a human error be undetected?

* Dbecause the syntax analyzer didn’t flag it

« and because software testing Is a sampling process
An antidote: try to develop test cases that are representative of
partitioned classes of functionality and behavior

SE and SWE - Dick Fairley 10

Software engineers and software developers

« Most software engineers are current or past software developers
* but not all software developers are software engineers*

« Software development requires concentrated attention to details
 Some people are inherently detall oriented
« and some are inherently “big-picture” thinkers
« A competent software engineer has some of each ability

*Competent software developers are valuable engineering assets

SE and SWE - Dick Fairley 11

Systems Engineers and Software Systems Engineers

Some differences
Systems engineers:
« engage Iin holistic systems thinking,
* pursue incremental system development, and
 rely on the expertise of other kinds of engineers
Software engineers:
« are more narrowly focused in their thinking,
* pursue iterative software development, and
 rely on the expertise of software developers

SE and SWE - Dick Fairley

12

Some people-communication issues

Three fundamental issues that inhibit SEs and SWEs from
effectively working together*
People-communication issues:
1. Different education and work experience backgrounds
2. Different incentives for success
3. Different usages of shared terminology

*Fairley, R.E. 2019. Systems Engineering of Software-Enabled Systems, Hoboken, New Jersey: John Wiley and Sons.

SE and SWE - Dick Fairley 13

=
=N

Differences in SE & SWE educations II*@;CQEE

« SEs typically have traditional engineering educations
— based on continuous mathematics and quantified metrics
— and “come up through the ranks” starting as traditional engineers
* most don’t have software-awareness training or mentoring
« SWESs have a variety of educational backgrounds
— typically based on discrete mathematics and computer science
— and “come up through the ranks” starting as software coders and
testers
* most don’t have systems-awareness training or mentoring

SE and SWE - Dick Fairley 14

=
===,

Systems engineers’ work experiences I&C_Q}E

« Hardware devices are procured as commodity items or fabricated as
special purpose elements
* Procurement delays can delay progress
» special purpose elements are usually fabricated by technicians
« sometimes by affiliated subcontractors
« Development of a system increment may require one or more months
« Development processes are sometimes dated and bureaucratic
* sometimes caused by contractor-acquirer relations
» Holistic measures of success: on time, on budget, performance envelope
scalability, adaptability, ease of integrating into a SoS, . . .
» are they prioritized?

SE and SWE - Dick Fairley 15

Software developers’ work experiences - 1

« Software can be implemented by software developers, reused from
other systems and software libraries, and licensed from vendors
« Software is usually implemented by one or more small teams using
weekly iteration cycles
 Newly developed software code can be stored in libraries for later
reuse in other systems and contexts
— competent software developers are aware of the code available
for reuse and the contexts in which the code can be reused
« and are always thinking (or should be thinking) “How can |
make this software reusable in different contexts without
violating the constraints of this application?”

SE and SWE — Dick Fairley

16

Software developers’ work experiences - 2

* |In contrast to hardware, perfect copies of software can be
repeatedly replicated with very little effort

 but the perfect copies may be imperfect
* The primary incentive for success is usually software performance
« response time, throughput, and use of computing resources

« achieved at the risk of cutting corners that inhibit desirable
features such as software security and future adaptability

desirable software features are tradeoffs with software performance

SE and/SWE=Dick Fairley

=
, N

~

N4

17

=

g =

Communication faillure antidotes Nl

\g_.'”@

Antidotes for easing failures to communicate*:

e cross-training, mentorship, and relevant work experience
« lectures, workshops, short courses, and reading
Antidote deterrent:

| can’t spare my valuable SE/SWE to learn these things
A recipe for disaster:

repeating the same processes and expecting different result

There is no sliver bullet*

*Frederick P. Brooks Jr, 1986. “No Silver Bullet — Essence and Accident in Software Engineering”
Proceedings of the IFIP Tenth International Conference tenth world Computing Conference.

SE and SWE - Dick Fairley 18

= N

¢ =
INCOSE
-

Use and misuse of terminology

« SEs and SWEs use (and misuse) the same terms with different meanings
Examples:
“‘incremental, iterative, design, capability, performance, review, prototype ,
verification and validation techniques , ...”
Antidotes:
 organization-specific and project-specific Glossaries of Common Terms
 consistent use of terminology by respected opinion leaders and document
writers
Antidote deterrent:
| don’t have the time or resources to involve my people to develop
glossaries and train my people to use them

SE and SWE - Dick Fairley 19

Two software technologies

1. hardware-software interface bridges
2. software design patterns

SE and SWE — Dick Fairley 20

1. Hardware-software interface bridges

« Hardware-software interfaces are the Achilles Heel of
software-enabled system development

— possible interface mismatches:
« naming of interfaces and interface elements
e numbers, types, and units of interface parameters

* too many or too few parameters on one side of an
Interface

* timing synchronization: race conditions
* priorities of alarm signals and service interrupts

SE and SWE - Dick Fairley

A simple hardware-software interface bridge

some hardware entities
data can be Sftwr | Software A/D \ Hdwr include A/D and D/A converters
pushed or pulle entity | Bridge J p/a | entity and some have more complex and
sophisticated digital interfaces

« A Software Bridge transforms software inputs into software outputs

« Sftwr entity: a system entity* copied from a software library or newly
Implemented for a particular use

« A/D and D/A: Analog to Digital and Digital to Analog converters

« Hdwr entity: a system entity that is not a software entity, a sentient being, or
an element of the physical environment
*a system entity is any part of the system architecture

software bridges can provide hardware-software interfaces
without modifying the software entity or the hardware entity
or their interfaces

SE and SWE - Dick Fairley rfa22

(

A more complex hardware-software interface I
L/~
st 2L 1 Siwr | & H-—{ AD] rawr
Y TaT15 | Bridee |8 o Dia ENtity
7 B
4/>alarm

« Afacade has no executable code; it is a pass-through mask - facades can be used
to mask some unwanted inputs and outputs without changing the Sftwr or Hdwr
entity

« to test or use some capabilities without allowing others to be activating
* to tailor capabilities for different hardware or software entities

 a buffer (B) is an area of computer memory used as a temporary storage location

e a waltchdog timer (WdT) can generate alarm signals when timing allocations are
exceeded

SE and SWE - Dick Fairley 23

Some observations: — [l — | [B
Sftwr o | Sfwr | & T AD | Hawr
enity - »% Bridge =1 J /A entity

/ B

/v alarm

> W nhoe

A software bridge design pattern or tailorable bridge code may be copiable from a library
Tallorable facades, buffers, and timers are usually available from software code libraries
a bridge may be needed to connect the Sftwr Bridge to the Watchdog Timers (WdT)

WdTs are usually programmable with settable time durations

SE and SWE - Dick Fairley 24

2. Software design patterns "’3@955

« A software library contains code to be used as is or as modified
« adesign pattern is a best-practices template for solving a design problem within
a given design context — and may be copiable from a library
 There is an annual software design patterns conference and a reference book
 The GoF design-patterns reference book includes 23 design patterns
« seven of the patterns are the most-commonly used ones
« Competent software developers know (some) design patterns and when to
apply them
« Design patterns also provide a common language for communication among
software developers
- e,0., ‘I'musing an MVC pattern for the display interface”
« which may include a hardware-software bridge design pattern

SE and SWE - Dick Fairley 25

Notes

1. Software bridges are not silver bullets
— one side of a bridge may need an input parameter that is
not provided by the output side of the bridge
— the data from the output side of a bridge may require a
lengthy computation that violates timing requirements
— emergent behaviors may emerge
2. Design patterns are not silver bullets
— A simpler solution may be adequate,
— but it may not include features that enhance security or
facilitate making enhancements and modification

But bridges and other design patterns are highly effective in many situations

SE and SWE - Dick Fairley 26

Development processes

SE and SWE — Dick Fairley 27

Differences in SE and SWE development methods

« Systems typically evolve in successive increments
— development of a system increment may take a month or longer
— and may involve multiple teams or multiple contractors
« Software typically evolves in successive iterations
— iterations are typically completed weekly by one or more small
teams
 Interpersonal communication among software developers
limits individual team size not more than 5 software
developers (perhaps 6 or 7)
« schedule constraints may require multiple concurrent

software development teams
— with weekly integration, verification, and validation

SE and SWE - Dick Fairley 28

Different processes for A
incremental hardware N Comaptel) , _ Sya it _
development and iterative
software development do not
sufficiently address integration
of hardware and software

does a miracle happen?

...

- Hardwar procurement &_fabrication w
or can s Oftware b Il d g €S an d Software reuse & implementation
d es | g n p atterns b e us ed ') Hardware-software integration?
TnpLie Development Processes——

SE and SWE — Dick Fairley 29

Synchronizing concurrent development processes? INCOSE

— See chapters 5 to 9 of my book for a description of
1> The Integrated Iterative-Incremental Development Process
— The approach

— always have a functioning something that can be demonstrated and that
grows incrementally

« adigital twin, a partial digital twin, a system skeleton, a backbone
framework, a hardware subsystem or software being reused from a
library or another system

« some elements may be real, some may be prototypes,

« some may be dummy interfaces, some may be simulations or
emulations of system elements,

« and some may be realized elements that replace digital twin elements

SE and SWE - Dick Fairley 30

g B
How to synchronize concurrent development processes? IN&Q}E
1. software may be iteratively integrated into the evolving incremental system

baseline to replace software prototypes and digital-twin elements
or hardware can be incrementally integrated into the evolving iterative software
baseline to replace hardware prototypes and digital-twin elements
schedule frequent demonstrations of progress following V&V of a new baseline

— attended by authorized decision-making personnel

— with emphasis on the elements incrementally added or replaced

« and on the interfaces among the new elements and existing elements

prepare reports of progress achieved and not achieved for each demonstration -
and don’t hide the reports
maintain a schedule of elements to be incrementally added and demonstrated,
revised as necessary - and don'’t hide the schedule of planned vs actual

SE and SWE - Dick Fairley 31

Does the I3 development process work in practice?

* Yes, there are no unproven elements in the process
 the contribution of I° is integration of proven techniques
* No, If the process is not followed as specified

disclaimer: the process has been shown to work on smaller-scale
hardware-software projects but not on large systems programs

SE and SWE — Dick Fairley 32

« Comments? Questions?
please contact me at
dickfairley@gmail.com

SE and SWE — Dick Fairley

