
1

Welcome to the Webinar! Please note that we have moved to the ZOOM

platform. Please join ZOOM audio (Voice over Internet) if you are able to

connect. Otherwise, please see the webinar invitation for dial-in phone lines

INCOSE Webinar Series
Wednesday 15th November 2023 – Webinar 169

Systems engineering and software engineering:

 interactions among people, processes, and technologies

Richard (Dick) Fairley

Systems engineering and software engineering:

 interactions among people, processes, and technologies

contact me at

dickfairley@gmail.com

2 SE and SWE – Dick Fairley

Some of my INCOSE involvements

• Joined INCOSE in 2012

• Currently Assistant Director for Accreditation of the INCOSE Academic Council

• and a member of the ABET curriculum committee

• Member of the team that developed the ABET program criteria for accrediting

systems engineering academic programs

– and developed training material for systems engineering program evaluators

in 6 ABET-EAC professional societies

• Member of the team that developed Version 1 of the Systems Engineering Body

of Knowledge (SEBoK)

• Contributed two articles to the Systems Engineering Handbook V5

– first articles on software engineering to appear in the SE Handbook

3 SE and SWE – Dick Fairley

Other contributions

• Co-editor of the Software Engineering Body of Knowledge (SWEBOK, V3)

– along with colleague Pierre Bourque

– 28 contributing authors from several countries

• Team leader and primary author for development of the Software

Engineering Competency Model (SWECOM)

• https://www.computer.org/volunteering/boards-and-

committees/professional-educational-activities/software-engineering-

competency-model

4 SE and SWE – Dick Fairley

SWE, like SE, has a body of knowledge and a competency model

https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model

Today’s Agenda

• Two key references

• SE & SWE relationships

• SE-SWE people interactions

• SE/SWE technology issues

• Hardware-software process issues

5 SE and SWE – Dick Fairley

Two key references - 1

SEBoK (sebokwiki.org)

Part 3 System Lifecycle Models

 Part 6 KA: Systems Engineering and Software Engineering

Five Topics in the Part 6 KA

1. Software Engineering in the Systems Engineering Life Cycle

 Tom Hilburn & Dick Fairley

2. The Nature of Software

 Dick Fairley

3. An Overview of the Guide to SWEBOK

 Dick Fairley & Pierre Bourque (V3 Editors)

4. Key Points a Systems Engineer Needs to Know about Software Engineering

 Dick Fairley and Alice Squires

5. Software Engineering Features - Models, Methods, Tools, Standards, and

Metrics

 Tom Hilburn

6 SE and SWE – Dick Fairley SE and SWE – Dick Fairley

https://sebokwiki.org/wiki/Software_Engineering_in_the_Systems_Engineering_Life_Cycle
https://sebokwiki.org/wiki/The_Nature_of_Software
https://sebokwiki.org/wiki/An_Overview_of_the_SWEBOK_Guide
https://sebokwiki.org/wiki/Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sebokwiki.org/wiki/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics

My book

Fairley, R.E. 2019. Systems Engineering of Software-Enabled Systems* Hoboken, New

Jersey: John Wiley and Sons

*A software-enabled system is a system for which software enables a mission, business,

or product

Two key references - 2

Systems engineering and software engineering

• Why do new systems and modified legacy systems increasingly rely on

incorporated software?

– because some system requirements and constraints can be more

quickly and easily realized in software than in hardware

– and because software is more malleable than is hardware

• and is usually more easily modified that hardware as

requirements, constraints, and hardware-software interfaces

evolve

• SE and SWE are “intimately intertwined”*

*Boehm, B. W. "Integrating Software Engineering and Systems

Engineering." The Journal of INCOSE Vol. 1 (No. 1): pp. 147-151. 1994

8 SE and SWE – Dick Fairley

SEBoK Part 6 KA: Systems Engineering and Software Engineering

Systems Engineering Methods

Adapted to Software Engineering

Software Engineering Methods

Adapted to Systems Engineering

• Stakeholder Analysis

• Requirements Engineering

• Functional Decomposition

• Design Constraints

• Architectural Design

• Design Criteria

• Design Tradeoffs

• Interface Specification

• Traceability

• Configuration Management

• Systematic Verification and Validation

• Model-Driven Development

• UML-SysML

• Use Cases

• Object-Oriented Design

• Iterative Development

• Agile Methods

• Continuous Integration

• Process Modeling

• Process Improvement

• Incremental Verification and

Validation

Table 1. Adaptation of Methods Across SE and SWE (Fairley and Willshire 2011)

Reprinted with permission of Dick Fairley and Mary Jane Willshire.

9 SE and SWE – Dick Fairley

Software is malleable

• Composable and readable software (source code) is composed

by typing symbols and clicking on icons

• A single missing, erroneous, or misplaced symbol, if undetected,

can cause a large system to behave incorrectly or crash

• for example, a “<” when a “>” was intended, or a missing ”;”

• Why might a human error be undetected?

• because the syntax analyzer didn’t flag it

• and because software testing is a sampling process

• An antidote: try to develop test cases that are representative of

partitioned classes of functionality and behavior

10 SE and SWE – Dick Fairley

Software engineers and software developers

• Most software engineers are current or past software developers

• but not all software developers are software engineers*

• Software development requires concentrated attention to details

• Some people are inherently detail oriented

• and some are inherently “big-picture” thinkers

• A competent software engineer has some of each ability

*Competent software developers are valuable engineering assets

11 SE and SWE – Dick Fairley

Systems Engineers and Software Systems Engineers

Some differences

Systems engineers:

• engage in holistic systems thinking,

• pursue incremental system development, and

• rely on the expertise of other kinds of engineers

Software engineers:

• are more narrowly focused in their thinking,

• pursue iterative software development, and

• rely on the expertise of software developers

12 SE and SWE – Dick Fairley

Some people-communication issues

Three fundamental issues that inhibit SEs and SWEs from

effectively working together*

People-communication issues:

1. Different education and work experience backgrounds

2. Different incentives for success

3. Different usages of shared terminology

*Fairley, R.E. 2019. Systems Engineering of Software-Enabled Systems, Hoboken, New Jersey: John Wiley and Sons.

13 SE and SWE – Dick Fairley

Differences in SE & SWE educations

• SEs typically have traditional engineering educations

– based on continuous mathematics and quantified metrics

– and “come up through the ranks” starting as traditional engineers

• most don’t have software-awareness training or mentoring

• SWEs have a variety of educational backgrounds

– typically based on discrete mathematics and computer science

– and “come up through the ranks” starting as software coders and

testers

• most don’t have systems-awareness training or mentoring

14 SE and SWE – Dick Fairley

Systems engineers’ work experiences

• Hardware devices are procured as commodity items or fabricated as

special purpose elements

• Procurement delays can delay progress

• special purpose elements are usually fabricated by technicians

• sometimes by affiliated subcontractors

• Development of a system increment may require one or more months

• Development processes are sometimes dated and bureaucratic

• sometimes caused by contractor-acquirer relations

• Holistic measures of success: on time, on budget, performance envelope

scalability, adaptability, ease of integrating into a SoS, . . .

» are they prioritized?

15 SE and SWE – Dick Fairley

Software developers’ work experiences - 1

• Software can be implemented by software developers, reused from

other systems and software libraries, and licensed from vendors

• Software is usually implemented by one or more small teams using

weekly iteration cycles

• Newly developed software code can be stored in libraries for later

reuse in other systems and contexts

– competent software developers are aware of the code available

for reuse and the contexts in which the code can be reused

• and are always thinking (or should be thinking) “How can I

make this software reusable in different contexts without

violating the constraints of this application?”

16 SE and SWE – Dick Fairley

Software developers’ work experiences - 2

• In contrast to hardware, perfect copies of software can be

repeatedly replicated with very little effort

• but the perfect copies may be imperfect

• The primary incentive for success is usually software performance

• response time, throughput, and use of computing resources

• achieved at the risk of cutting corners that inhibit desirable

features such as software security and future adaptability

17
SE and SWE – Dick Fairley

desirable software features are tradeoffs with software performance

Communication failure antidotes

Antidotes for easing failures to communicate*:

• cross-training, mentorship, and relevant work experience

• lectures, workshops, short courses, and reading

Antidote deterrent:

I can’t spare my valuable SE/SWE to learn these things

A recipe for disaster:

repeating the same processes and expecting different result

There is no sliver bullet*

*Frederick P. Brooks Jr, 1986. “No Silver Bullet – Essence and Accident in Software Engineering”

Proceedings of the IFIP Tenth International Conference tenth world Computing Conference.

18 SE and SWE – Dick Fairley

Use and misuse of terminology

• SEs and SWEs use (and misuse) the same terms with different meanings

Examples:

“incremental, iterative, design, capability, performance, review, prototype ,

verification and validation techniques , . . .”

Antidotes:

• organization-specific and project-specific Glossaries of Common Terms

• consistent use of terminology by respected opinion leaders and document

writers

Antidote deterrent:

• I don’t have the time or resources to involve my people to develop

glossaries and train my people to use them

 19 SE and SWE – Dick Fairley

Two software technologies

1. hardware-software interface bridges

2. software design patterns

SE and SWE – Dick Fairley 20

T1. Hardware-software interface bridges

• Hardware-software interfaces are the Achilles Heel of

software-enabled system development

– possible interface mismatches:

• naming of interfaces and interface elements

• numbers, types, and units of interface parameters

• too many or too few parameters on one side of an

interface

• timing synchronization: race conditions

• priorities of alarm signals and service interrupts

21 SE and SWE – Dick Fairley

A simple hardware-software interface bridge

• A Software Bridge transforms software inputs into software outputs

• Sftwr entity: a system entity* copied from a software library or newly

implemented for a particular use

• A/D and D/A: Analog to Digital and Digital to Analog converters

• Hdwr entity: a system entity that is not a software entity, a sentient being, or

an element of the physical environment

*a system entity is any part of the system architecture

software bridges can provide hardware-software interfaces

without modifying the software entity or the hardware entity

or their interfaces

some hardware entities

include A/D and D/A converters

and some have more complex and

sophisticated digital interfaces

Sftwr

entity D/A

A/D Software

Bridge

Hdwr

entity

data can be

pushed or pulled

rfa22 SE and SWE – Dick Fairley

A more complex hardware-software interface

• A facade has no executable code; it is a pass-through mask - facades can be used

to mask some unwanted inputs and outputs without changing the Sftwr or Hdwr

entity

• to test or use some capabilities without allowing others to be activating

• to tailor capabilities for different hardware or software entities

• a buffer (B) is an area of computer memory used as a temporary storage location

• a watchdog timer (WdT) can generate alarm signals when timing allocations are

exceeded

Sftwr

enity
Hdwr

entity
D/A

A/D

Sftwr

Bridge

fa
c
a
d
e

fa
c
a
d
e

B

B B

B

WdT alarm

23 SE and SWE – Dick Fairley

Some observations:

1. A software bridge design pattern or tailorable bridge code may be copiable from a library

2. Tailorable facades, buffers, and timers are usually available from software code libraries

3. a bridge may be needed to connect the Sftwr Bridge to the Watchdog Timers (WdT)

4. WdTs are usually programmable with settable time durations

Sftwr

enity
Hdwr

entity
D/A

A/D

Sftwr

Bridge

fa
c
a
d
e

fa
c
a
d
e

B

B B

B

WdT alarm

24 SE and SWE – Dick Fairley

T2. Software design patterns

• A software library contains code to be used as is or as modified

• a design pattern is a best-practices template for solving a design problem within

a given design context – and may be copiable from a library

• There is an annual software design patterns conference and a reference book

• The GoF design-patterns reference book includes 23 design patterns

• seven of the patterns are the most-commonly used ones

• Competent software developers know (some) design patterns and when to

apply them

• Design patterns also provide a common language for communication among

software developers

– e,g., “I’m using an MVC pattern for the display interface”

• which may include a hardware-software bridge design pattern

25 SE and SWE – Dick Fairley

Notes

1. Software bridges are not silver bullets

– one side of a bridge may need an input parameter that is

not provided by the output side of the bridge

– the data from the output side of a bridge may require a

lengthy computation that violates timing requirements

– emergent behaviors may emerge

2. Design patterns are not silver bullets

– A simpler solution may be adequate,

– but it may not include features that enhance security or

facilitate making enhancements and modification

SE and SWE – Dick Fairley 26

But bridges and other design patterns are highly effective in many situations

Development processes

27 SE and SWE – Dick Fairley

Differences in SE and SWE development methods

• Systems typically evolve in successive increments

– development of a system increment may take a month or longer

– and may involve multiple teams or multiple contractors

• Software typically evolves in successive iterations

– iterations are typically completed weekly by one or more small

teams

• interpersonal communication among software developers

limits individual team size not more than 5 software

developers (perhaps 6 or 7)

• schedule constraints may require multiple concurrent

software development teams

– with weekly integration, verification, and validation

28 SE and SWE – Dick Fairley

Concurrent hardware-software development

Different processes for

incremental hardware

development and iterative

software development do not

sufficiently address integration

of hardware and software

 does a miracle happen?

or can software bridges and

design patterns be used?

Hardware procurement & fabrication

Software reuse & implementation

Hardware-software integration?

Development Processes

29 SE and SWE – Dick Fairley

Synchronizing concurrent development processes?

– See chapters 5 to 9 of my book for a description of

 I3 The Integrated Iterative-Incremental Development Process

– The approach

– always have a functioning something that can be demonstrated and that

grows incrementally

• a digital twin, a partial digital twin, a system skeleton, a backbone

framework, a hardware subsystem or software being reused from a

library or another system

• some elements may be real, some may be prototypes,

• some may be dummy interfaces, some may be simulations or

emulations of system elements,

• and some may be realized elements that replace digital twin elements

30 SE and SWE – Dick Fairley

How to synchronize concurrent development processes?

1. software may be iteratively integrated into the evolving incremental system

baseline to replace software prototypes and digital-twin elements

2. or hardware can be incrementally integrated into the evolving iterative software

baseline to replace hardware prototypes and digital-twin elements

3. schedule frequent demonstrations of progress following V&V of a new baseline

– attended by authorized decision-making personnel

– with emphasis on the elements incrementally added or replaced

• and on the interfaces among the new elements and existing elements

4. prepare reports of progress achieved and not achieved for each demonstration -

and don’t hide the reports

5. maintain a schedule of elements to be incrementally added and demonstrated,

revised as necessary - and don’t hide the schedule of planned vs actual

31 SE and SWE – Dick Fairley

Does the I3 development process work in practice?

• Yes, there are no unproven elements in the process

• the contribution of I3 is integration of proven techniques

• No, if the process is not followed as specified

SE and SWE – Dick Fairley 32

disclaimer: the process has been shown to work on smaller-scale

hardware-software projects but not on large systems programs

• Comments? Questions?

please contact me at

dickfairley@gmail.com

SE and SWE – Dick Fairley

